Library UniMath.NumberSystems.RationalNumbers

Generalities on the type of rationals and rational arithmetic. Vladimir Voevodsky . Aug. - Sep. 2011.

In this file we introduce the type hq of rationals defined as the quotient set of dirprod nat nat by the standard equivalence relation and develop the main notions of the rational arithmetic using this definition .

Preamble

Settings

Unset Kernel Term Sharing.

Imports

Require Import UniMath.Algebra.Monoids.
Require Import UniMath.Algebra.Groups.
Require Export UniMath.NumberSystems.Integers .

Opaque hz .

The commutative ring hq of integres

General definitions


Definition hq : fld := fldfrac hzintdom isdeceqhz .
Definition hqaddabgr : abgr := hq .
Definition hqmultabmonoid : abmonoid := ringmultabmonoid hq .
Definition hqtype : UU := hq .

Definition hzhztohq : hz ( intdomnonzerosubmonoid hzintdom ) hq := λ x a, setquotpr _ ( make_dirprod x a ) .

Definition hqplus : hq hq hq := @op1 hq.
Definition hqsign : hq hq := grinv hqaddabgr .
Definition hqminus : hq hq hq := λ x y, hqplus x ( hqsign y ) .
Definition hqzero : hq := unel hqaddabgr .

Definition hqmult : hq hq hq := @op2 hq .
Definition hqone : hq := unel hqmultabmonoid .

Declare Scope hq_scope.
Bind Scope hq_scope with hq .
Notation " x + y " := ( hqplus x y ) : hq_scope .
Notation " 0 " := hqzero : hq_scope .
Notation " 1 " := hqone : hq_scope .
Notation " - x " := ( hqsign x ) : hq_scope .
Notation " x - y " := ( hqminus x y ) : hq_scope .
Notation " x * y " := ( hqmult x y ) : hq_scope .

Delimit Scope hq_scope with hq .

Properties of equality on hq


Definition isdeceqhq : isdeceq hq := isdeceqfldfrac hzintdom isdeceqhz .

Definition isasethq := setproperty hq .

Definition hqeq ( x y : hq ) : hProp := make_hProp ( x = y ) ( isasethq _ _ ) .
Definition isdecrelhqeq : isdecrel hqeq := λ a b, isdeceqhq a b .
Definition hqdeceq : decrel hq := make_decrel isdecrelhqeq .


Definition hqbooleq := decreltobrel hqdeceq .

Definition hqneq ( x y : hq ) : hProp := make_hProp ( neg ( x = y ) ) ( isapropneg _ ) .
Definition isdecrelhqneq : isdecrel hqneq := isdecnegrel _ isdecrelhqeq .
Definition hqdecneq : decrel hq := make_decrel isdecrelhqneq .


Definition hqboolneq := decreltobrel hqdecneq .

Local Open Scope hz_scope .

Properties of addition and subtraction on hq


Local Open Scope hq_scope .

Lemma hqplusr0 ( x : hq ) : paths ( x + 0 ) x .
Proof . apply ( ringrunax1 _ x ) . Defined .

Lemma hqplusl0 ( x : hq ) : paths ( 0 + x ) x .
Proof . apply ( ringlunax1 _ x ) . Defined .

Lemma hqplusassoc ( x y z : hq ) : paths ( ( x + y ) + z ) ( x + ( y + z ) ) .
Proof . intros . apply ( ringassoc1 hq x y z ) . Defined .

Lemma hqpluscomm ( x y : hq ) : paths ( x + y ) ( y + x ) .
Proof . intros . apply ( ringcomm1 hq x y ) . Defined .

Lemma hqlminus ( x : hq ) : paths ( -x + x ) 0 .
Proof . apply ( ringlinvax1 hq x ) . Defined .

Lemma hqrminus ( x : hq ) : paths ( x - x ) 0 .
Proof . apply ( ringrinvax1 hq x ) . Defined .

Lemma isinclhqplusr ( n : hq ) : isincl ( λ m : hq, m + n ) .
Proof. apply ( pr2 ( weqtoincl ( weqrmultingr hqaddabgr n ) ) ) . Defined.

Lemma isinclhqplusl ( n : hq ) : isincl ( λ m : hq, n + m ) .
Proof. intro. apply ( pr2 ( weqtoincl ( weqlmultingr hqaddabgr n ) ) ) . Defined .

Lemma hqpluslcan ( a b c : hq ) ( is : paths ( c + a ) ( c + b ) ) : a = b .
Proof . intros . apply ( @grlcan hqaddabgr a b c is ) . Defined .

Lemma hqplusrcan ( a b c : hq ) ( is : paths ( a + c ) ( b + c ) ) : a = b .
Proof . intros . apply ( @grrcan hqaddabgr a b c is ) . Defined .

Definition hqinvmaponpathsminus { a b : hq } ( e : paths ( - a ) ( - b ) ) : a = b := grinvmaponpathsinv hqaddabgr e .

Properties of multiplication on hq


Lemma hqmultr1 ( x : hq ) : paths ( x × 1 ) x .
Proof . apply ( ringrunax2 _ x ) . Defined .

Lemma hqmultl1 ( x : hq ) : paths ( 1 × x ) x .
Proof . apply ( ringlunax2 _ x ) . Defined .

Lemma hqmult0x ( x : hq ) : paths ( 0 × x ) 0 .
Proof . apply ( ringmult0x _ x ) . Defined .

Lemma hqmultx0 ( x : hq ) : paths ( x × 0 ) 0 .
Proof . apply ( ringmultx0 _ x ) . Defined .

Lemma hqmultassoc ( x y z : hq ) : paths ( ( x × y ) × z ) ( x × ( y × z ) ) .
Proof . intros . apply ( ringassoc2 hq x y z ) . Defined .

Lemma hqmultcomm ( x y : hq ) : paths ( x × y ) ( y × x ) .
Proof . intros . apply ( ringcomm2 hq x y ) . Defined .

Multiplicative inverse and division on hq

Note : in our definition it is possible to divide by 0 . The result in this case is 0 .

Definition hqmultinv : hq hq := λ x, fldfracmultinv0 hzintdom isdeceqhz x .

Lemma hqislinvmultinv ( x : hq ) ( ne : hqneq x 0 ) : paths ( ( hqmultinv x ) × x ) 1 .
Proof. intros . apply ( islinvinfldfrac hzintdom isdeceqhz x ne ) . Defined .

Lemma hqisrinvmultinv ( x : hq ) ( ne : hqneq x 0 ) : paths ( x × ( hqmultinv x ) ) 1 .
Proof. intros . apply ( isrinvinfldfrac hzintdom isdeceqhz x ne ) . Defined .

Definition hqdiv ( x y : hq ) : hq := hqmult x ( hqmultinv y ) .

Definition and properties of "greater", "less", "greater or equal" and "less or equal" on hq .

Definitions and notations


Definition hqgth : hrel hq := fldfracgt hzintdom isdeceqhz isplushrelhzgth isringmulthzgth ( ct ( hzgth , isdecrelhzgth, 1%hz , 0%hz ) ) hzneqchoice .

Definition hqlth : hrel hq := λ a b, hqgth b a .

Definition hqleh : hrel hq := λ a b, make_hProp ( neg ( hqgth a b ) ) ( isapropneg _ ) .

Definition hqgeh : hrel hq := λ a b, make_hProp ( neg ( hqgth b a ) ) ( isapropneg _ ) .

Decidability

Properties of individual relations

hqgth

Lemma istranshqgth ( n m k : hq ) : hqgth n m hqgth m k hqgth n k .
Proof. apply istransfldfracgt . exact istranshzgth . Defined .

Lemma isirreflhqgth ( n : hq ) : neg ( hqgth n n ) .
Proof. apply isirreflfldfracgt . exact isirreflhzgth . Defined .

Lemma isasymmhqgth ( n m : hq ) : hqgth n m hqgth m n empty .
Proof. apply isasymmfldfracgt . exact isasymmhzgth . Defined .

Lemma isantisymmneghqgth ( n m : hq ) : neg ( hqgth n m ) neg ( hqgth m n ) n = m .
Proof . apply isantisymmnegfldfracgt . exact isirreflhzgth . exact isantisymmneghzgth . Defined .

Lemma isnegrelhqgth : isnegrel hqgth .
Proof . apply isdecreltoisnegrel . apply isdecrelhqgth . Defined .

Lemma iscoantisymmhqgth ( n m : hq ) : neg ( hqgth n m ) ( hqgth m n ) ⨿ ( n = m ) .
Proof . revert n m. apply isantisymmnegtoiscoantisymm . apply isdecrelhqgth . intros n m . apply isantisymmneghqgth . Defined .

Lemma iscotranshqgth ( n m k : hq ) : hqgth n k hdisj ( hqgth n m ) ( hqgth m k ) .
Proof . intros gnk . destruct ( isdecrelhqgth n m ) as [ gxy | ngxy ] . apply ( hinhpr ( ii1 gxy ) ) . apply hinhpr . apply ii2 . destruct ( isdecrelhqgth m n ) as [ gyx | ngyx ] . apply ( istranshqgth _ _ _ gyx gnk ) . set ( e := isantisymmneghqgth _ _ ngxy ngyx ) . rewrite e in gnk . apply gnk . Defined .


Definition istranshqlth ( n m k : hq ) : hqlth n m hqlth m k hqlth n k := λ lnm lmk, istranshqgth _ _ _ lmk lnm .

Definition isirreflhqlth ( n : hq ) : neg ( hqlth n n ) := isirreflhqgth n .

Definition isasymmhqlth ( n m : hq ) : hqlth n m hqlth m n empty := λ lnm lmn, isasymmhqgth _ _ lmn lnm .

Definition isantisymmneghqtth ( n m : hq ) : neg ( hqlth n m ) neg ( hqlth m n ) n = m := λ nlnm nlmn, isantisymmneghqgth _ _ nlmn nlnm .

Definition isnegrelhqlth : isnegrel hqlth := λ n m, isnegrelhqgth m n .

Definition iscoantisymmhqlth ( n m : hq ) : neg ( hqlth n m ) ( hqlth m n ) ⨿ ( n = m ) .
Proof . intros nlnm . destruct ( iscoantisymmhqgth m n nlnm ) as [ l | e ] . apply ( ii1 l ) . apply ( ii2 ( pathsinv0 e ) ) . Defined .

Definition iscotranshqlth ( n m k : hq ) : hqlth n k hdisj ( hqlth n m ) ( hqlth m k ) .
Proof . intros lnk . apply ( ( pr1 islogeqcommhdisj ) ( iscotranshqgth _ _ _ lnk ) ) . Defined .


Definition istranshqleh ( n m k : hq ) : hqleh n m hqleh m k hqleh n k .
Proof. apply istransnegrel . unfold iscotrans. apply iscotranshqgth . Defined.

Definition isreflhqleh ( n : hq ) : hqleh n n := isirreflhqgth n .

Definition isantisymmhqleh ( n m : hq ) : hqleh n m hqleh m n n = m := isantisymmneghqgth n m .

Definition isnegrelhqleh : isnegrel hqleh .
Proof . apply isdecreltoisnegrel . apply isdecrelhqleh . Defined .

Definition iscoasymmhqleh ( n m : hq ) ( nl : neg ( hqleh n m ) ) : hqleh m n := negf ( isasymmhqgth _ _ ) nl .

Definition istotalhqleh : istotal hqleh .
Proof . intros x y . destruct ( isdecrelhqleh x y ) as [ lxy | lyx ] . apply ( hinhpr ( ii1 lxy ) ) . apply hinhpr . apply ii2 . apply ( iscoasymmhqleh _ _ lyx ) . Defined .

hqgeh .

Definition istranshqgeh ( n m k : hq ) : hqgeh n m hqgeh m k hqgeh n k := λ gnm gmk, istranshqleh _ _ _ gmk gnm .

Definition isreflhqgeh ( n : hq ) : hqgeh n n := isreflhqleh _ .

Definition isantisymmhqgeh ( n m : hq ) : hqgeh n m hqgeh m n n = m := λ gnm gmn, isantisymmhqleh _ _ gmn gnm .

Definition isnegrelhqgeh : isnegrel hqgeh := λ n m, isnegrelhqleh m n .

Definition iscoasymmhqgeh ( n m : hq ) ( nl : neg ( hqgeh n m ) ) : hqgeh m n := iscoasymmhqleh _ _ nl .

Definition istotalhqgeh : istotal hqgeh := λ n m, istotalhqleh m n .

hq is archimedean


Lemma isarchhq :
  isarchfld (X := hq) hqgth.
Proof.
  simple refine (isarchfldfrac hzintdom _ _ _ _ _ _ _ _).
  - exact isirreflhzgth.
  - exact istranshzgth.
  - apply isarchhz.
Qed.

Simple implications between comparisons


Definition hqgthtogeh ( n m : hq ) : hqgth n m hqgeh n m .
Proof. intros g . apply iscoasymmhqgeh . apply ( todneg _ g ) . Defined .

Definition hqlthtoleh ( n m : hq ) : hqlth n m hqleh n m := hqgthtogeh _ _ .

Definition hqlehtoneghqgth ( n m : hq ) : hqleh n m neg ( hqgth n m ) .
Proof. intros is is' . apply ( is is' ) . Defined .

Definition hqgthtoneghqleh ( n m : hq ) : hqgth n m neg ( hqleh n m ) := λ g l , hqlehtoneghqgth _ _ l g .

Definition hqgehtoneghqlth ( n m : hq ) : hqgeh n m neg ( hqlth n m ) := λ gnm lnm, hqlehtoneghqgth _ _ gnm lnm .

Definition hqlthtoneghqgeh ( n m : hq ) : hqlth n m neg ( hqgeh n m ) := λ gnm lnm, hqlehtoneghqgth _ _ lnm gnm .

Definition neghqlehtogth ( n m : hq ) : neg ( hqleh n m ) hqgth n m := isnegrelhqgth n m .

Definition neghqgehtolth ( n m : hq ) : neg ( hqgeh n m ) hqlth n m := isnegrelhqlth n m .

Definition neghqgthtoleh ( n m : hq ) : neg ( hqgth n m ) hqleh n m .
Proof . intros ng . destruct ( isdecrelhqleh n m ) as [ l | nl ] . apply l . destruct ( nl ng ) . Defined .

Definition neghqlthtogeh ( n m : hq ) : neg ( hqlth n m ) hqgeh n m := λ nl, neghqgthtoleh _ _ nl .

Comparison alternatives


Definition hqgthorleh ( n m : hq ) : ( hqgth n m ) ⨿ ( hqleh n m ) .
Proof . intros . apply ( isdecrelhqgth n m ) . Defined .

Definition hqlthorgeh ( n m : hq ) : ( hqlth n m ) ⨿ ( hqgeh n m ) := hqgthorleh _ _ .

Definition hqneqchoice ( n m : hq ) ( ne : neg ( n = m ) ) : ( hqgth n m ) ⨿ ( hqlth n m ) .
Proof . intros . destruct ( hqgthorleh n m ) as [ g | l ] . destruct ( hqlthorgeh n m ) as [ g' | l' ] . destruct ( isasymmhqgth _ _ g g' ) . apply ( ii1 g ) . destruct ( hqlthorgeh n m ) as [ l' | g' ] . apply ( ii2 l' ) . destruct ( ne ( isantisymmhqleh _ _ l g' ) ) . Defined .

Definition hqlehchoice ( n m : hq ) ( l : hqleh n m ) : ( hqlth n m ) ⨿ ( n = m ) .
Proof . intros . destruct ( hqlthorgeh n m ) as [ l' | g ] . apply ( ii1 l' ) . apply ( ii2 ( isantisymmhqleh _ _ l g ) ) . Defined .

Definition hqgehchoice ( n m : hq ) ( g : hqgeh n m ) : ( hqgth n m ) ⨿ ( n = m ) .
Proof . intros . destruct ( hqgthorleh n m ) as [ g' | l ] . apply ( ii1 g' ) . apply ( ii2 ( isantisymmhqleh _ _ l g ) ) . Defined .

Mixed transitivities


Lemma hqgthgehtrans ( n m k : hq ) : hqgth n m hqgeh m k hqgth n k .
Proof. intros gnm gmk . destruct ( hqgehchoice m k gmk ) as [ g' | e ] . apply ( istranshqgth _ _ _ gnm g' ) . rewrite e in gnm . apply gnm . Defined.

Lemma hqgehgthtrans ( n m k : hq ) : hqgeh n m hqgth m k hqgth n k .
Proof. intros gnm gmk . destruct ( hqgehchoice n m gnm ) as [ g' | e ] . apply ( istranshqgth _ _ _ g' gmk ) . rewrite e . apply gmk . Defined.

Lemma hqlthlehtrans ( n m k : hq ) : hqlth n m hqleh m k hqlth n k .
Proof . intros l1 l2 . apply ( hqgehgthtrans k m n l2 l1 ) . Defined .

Lemma hqlehlthtrans ( n m k : hq ) : hqleh n m hqlth m k hqlth n k .
Proof . intros l1 l2 . apply ( hqgthgehtrans k m n l2 l1 ) . Defined .

Addition and comparisons

gth

Definition isringaddhzgth : @isbinophrel hqaddabgr hqgth .
Proof . apply isringaddfldfracgt . exact isirreflhzgth . Defined .

Definition hqgthandplusl ( n m k : hq ) : hqgth n m hqgth ( k + n ) ( k + m ) := λ g, ( pr1 isringaddhzgth ) n m k g .

Definition hqgthandplusr ( n m k : hq ) : hqgth n m hqgth ( n + k ) ( m + k ) := λ g, ( pr2 isringaddhzgth ) n m k g .

Definition hqgthandpluslinv ( n m k : hq ) : hqgth ( k + n ) ( k + m ) hqgth n m .
Proof. intros g . set ( g' := hqgthandplusl _ _ ( - k ) g ) . clearbody g' . rewrite ( pathsinv0 ( hqplusassoc _ _ n ) ) in g' . rewrite ( pathsinv0 ( hqplusassoc _ _ m ) ) in g' . rewrite ( hqlminus k ) in g' . rewrite ( hqplusl0 _ ) in g' . rewrite ( hqplusl0 _ ) in g' . apply g' . Defined .

Definition hqgthandplusrinv ( n m k : hq ) : hqgth ( n + k ) ( m + k ) hqgth n m .
Proof. intros l . rewrite ( hqpluscomm n k ) in l . rewrite ( hqpluscomm m k ) in l . apply ( hqgthandpluslinv _ _ _ l ) . Defined .

Lemma hqgthsnn ( n : hq ) : hqgth ( n + 1 ) n .
Proof . set ( int := hqgthandplusl _ _ n ( ct ( hqgth , isdecrelhqgth , 1 , 0 ) ) ) . clearbody int . rewrite ( hqplusr0 n ) in int . apply int . Defined .

lth

Definition hqlthandplusl ( n m k : hq ) : hqlth n m hqlth ( k + n ) ( k + m ) := hqgthandplusl _ _ _ .

Definition hqlthandplusr ( n m k : hq ) : hqlth n m hqlth ( n + k ) ( m + k ) := hqgthandplusr _ _ _ .

Definition hqlthandpluslinv ( n m k : hq ) : hqlth ( k + n ) ( k + m ) hqlth n m := hqgthandpluslinv _ _ _ .

Definition hqlthandplusrinv ( n m k : hq ) : hqlth ( n + k ) ( m + k ) hqlth n m := hqgthandplusrinv _ _ _ .

Definition hqlthnsn ( n : hq ) : hqlth n ( n + 1 ) := hqgthsnn n .

leh

Definition hqlehandplusl ( n m k : hq ) : hqleh n m hqleh ( k + n ) ( k + m ) := negf ( hqgthandpluslinv n m k ) .

Definition hqlehandplusr ( n m k : hq ) : hqleh n m hqleh ( n + k ) ( m + k ) := negf ( hqgthandplusrinv n m k ) .

Definition hqlehandpluslinv ( n m k : hq ) : hqleh ( k + n ) ( k + m ) hqleh n m := negf ( hqgthandplusl n m k ) .

Definition hqlehandplusrinv ( n m k : hq ) : hqleh ( n + k ) ( m + k ) hqleh n m := negf ( hqgthandplusr n m k ) .

geh

Definition hqgehandplusl ( n m k : hq ) : hqgeh n m hqgeh ( k + n ) ( k + m ) := negf ( hqgthandpluslinv m n k ) .

Definition hqgehandplusr ( n m k : hq ) : hqgeh n m hqgeh ( n + k ) ( m + k ) := negf ( hqgthandplusrinv m n k ) .

Definition hqgehandpluslinv ( n m k : hq ) : hqgeh ( k + n ) ( k + m ) hqgeh n m := negf ( hqgthandplusl m n k ) .

Definition hqgehandplusrinv ( n m k : hq ) : hqgeh ( n + k ) ( m + k ) hqgeh n m := negf ( hqgthandplusr m n k ) .

Properties of hqgth in the terminology of algebra1.v


Definition isplushrelhqgth : @isbinophrel hqaddabgr hqgth := isringaddhzgth .

Lemma isinvplushrelhqgth : @isinvbinophrel hqaddabgr hqgth .
Proof . split . apply hqgthandpluslinv . apply hqgthandplusrinv . Defined .

Lemma isringmulthqgth : isringmultgt _ hqgth .
Proof . apply isringmultfldfracgt . exact isirreflhzgth . Defined .

Lemma isinvringmulthqgth : isinvringmultgt _ hqgth .
Proof . apply isinvringmultgtif . apply isplushrelhqgth . apply isringmulthqgth . exact hqneqchoice . exact isasymmhqgth . Defined .

Negation and comparisons

hqgth

Lemma hqgth0andminus { n : hq } ( is : hqgth n 0 ) : hqlth ( - n ) 0 .
Proof . intros . unfold hqlth . apply ( ringfromgt0 hq isplushrelhqgth is ) . Defined .

Lemma hqminusandgth0 { n : hq } ( is : hqgth ( - n ) 0 ) : hqlth n 0 .
Proof . intros . unfold hqlth . apply ( ringtolt0 hq isplushrelhqgth is ) . Defined .


Lemma hqlth0andminus { n : hq } ( is : hqlth n 0 ) : hqgth ( - n ) 0 .
Proof . intros . unfold hqlth . apply ( ringfromlt0 hq isplushrelhqgth is ) . Defined .

Lemma hqminusandlth0 { n : hq } ( is : hqlth ( - n ) 0 ) : hqgth n 0 .
Proof . intros . unfold hqlth . apply ( ringtogt0 hq isplushrelhqgth is ) . Defined .



Lemma hqleh0andminus { n : hq } ( is : hqleh n 0 ) : hqgeh ( - n ) 0 .
Proof . revert is. apply ( negf ( @hqminusandlth0 n ) ) . Defined .

Lemma hqminusandleh0 { n : hq } ( is : hqleh ( - n ) 0 ) : hqgeh n 0 .
Proof . revert is. apply ( negf ( @hqlth0andminus n ) ) . Defined .


Lemma hqgeh0andminus { n : hq } ( is : hqgeh n 0 ) : hqleh ( - n ) 0 .
Proof . revert is. apply ( negf ( @hqminusandgth0 n ) ) . Defined .

Lemma hqminusandgeh0 { n : hq } ( is : hqgeh ( - n ) 0 ) : hqleh n 0 .
Proof . revert is. apply ( negf ( @hqgth0andminus n ) ) . Defined .

Multiplication and comparisons

gth

Definition hqgthandmultl ( n m k : hq ) ( is : hqgth k hqzero ) : hqgth n m hqgth ( k × n ) ( k × m ) .
Proof. revert n m k is. apply ( isringmultgttoislringmultgt _ isplushrelhqgth isringmulthqgth ) . Defined .

Definition hqgthandmultr ( n m k : hq ) ( is : hqgth k hqzero ) : hqgth n m hqgth ( n × k ) ( m × k ) .
Proof . revert n m k is. apply ( isringmultgttoisrringmultgt _ isplushrelhqgth isringmulthqgth ) . Defined .

Definition hqgthandmultlinv ( n m k : hq ) ( is : hqgth k hqzero ) : hqgth ( k × n ) ( k × m ) hqgth n m .
Proof . intros is' . apply ( isinvringmultgttoislinvringmultgt hq isplushrelhqgth isinvringmulthqgth n m k is is' ) . Defined .

Definition hqgthandmultrinv ( n m k : hq ) ( is : hqgth k hqzero ) : hqgth ( n × k ) ( m × k ) hqgth n m .
Proof. intros is' . apply ( isinvringmultgttoisrinvringmultgt hq isplushrelhqgth isinvringmulthqgth n m k is is' ) . Defined .

lth

Definition hqlthandmultl ( n m k : hq ) ( is : hqgth k 0 ) : hqlth n m hqlth ( k × n ) ( k × m ) := hqgthandmultl _ _ _ is .

Definition hqlthandmultr ( n m k : hq ) ( is : hqgth k 0 ) : hqlth n m hqlth ( n × k ) ( m × k ) := hqgthandmultr _ _ _ is .

Definition hqlthandmultlinv ( n m k : hq ) ( is : hqgth k 0 ) : hqlth ( k × n ) ( k × m ) hqlth n m := hqgthandmultlinv _ _ _ is .

Definition hqlthandmultrinv ( n m k : hq ) ( is : hqgth k 0 ) : hqlth ( n × k ) ( m × k ) hqlth n m := hqgthandmultrinv _ _ _ is .

leh

Definition hqlehandmultl ( n m k : hq ) ( is : hqgth k 0 ) : hqleh n m hqleh ( k × n ) ( k × m ) := negf ( hqgthandmultlinv _ _ _ is ) .

Definition hqlehandmultr ( n m k : hq ) ( is : hqgth k 0 ) : hqleh n m hqleh ( n × k ) ( m × k ) := negf ( hqgthandmultrinv _ _ _ is ) .

Definition hqlehandmultlinv ( n m k : hq ) ( is : hqgth k 0 ) : hqleh ( k × n ) ( k × m ) hqleh n m := negf ( hqgthandmultl _ _ _ is ) .

Definition hqlehandmultrinv ( n m k : hq ) ( is : hqgth k 0 ) : hqleh ( n × k ) ( m × k ) hqleh n m := negf ( hqgthandmultr _ _ _ is ) .

geh

Definition hqgehandmultl ( n m k : hq ) ( is : hqgth k 0 ) : hqgeh n m hqgeh ( k × n ) ( k × m ) := negf ( hqgthandmultlinv _ _ _ is ) .

Definition hqgehandmultr ( n m k : hq ) ( is : hqgth k 0 ) : hqgeh n m hqgeh ( n × k ) ( m × k ) := negf ( hqgthandmultrinv _ _ _ is ) .

Definition hqgehandmultlinv ( n m k : hq ) ( is : hqgth k 0 ) : hqgeh ( k × n ) ( k × m ) hqgeh n m := negf ( hqgthandmultl _ _ _ is ) .

Definition hqgehandmultrinv ( n m k : hq ) ( is : hqgth k 0 ) : hqgeh ( n × k ) ( m × k ) hqgeh n m := negf ( hqgthandmultr _ _ _ is ) .

Multiplication of positive with negative, negative with positive and two negatives.

Lemma hqmultgth0gth0 { m n : hq } ( ism : hqgth m 0 ) ( isn : hqgth n 0 ) : hqgth ( m × n ) 0 .
Proof . intros . apply isringmulthqgth . apply ism . apply isn . Defined .

Lemma hqmultgth0geh0 { m n : hq } ( ism : hqgth m 0 ) ( isn : hqgeh n 0 ) : hqgeh ( m × n ) 0 .
Proof . intros . destruct ( hqgehchoice _ _ isn ) as [ gn | en ] .

apply ( hqgthtogeh _ _ ( hqmultgth0gth0 ism gn ) ) .

rewrite en . rewrite ( hqmultx0 m ) . apply isreflhqgeh . Defined .

Lemma hqmultgeh0gth0 { m n : hq } ( ism : hqgeh m 0 ) ( isn : hqgth n 0 ) : hqgeh ( m × n ) 0 .
Proof . intros . destruct ( hqgehchoice _ _ ism ) as [ gm | em ] .

apply ( hqgthtogeh _ _ ( hqmultgth0gth0 gm isn ) ) .

rewrite em . rewrite ( hqmult0x _ ) . apply isreflhqgeh . Defined .

Lemma hqmultgeh0geh0 { m n : hq } ( ism : hqgeh m 0 ) ( isn : hqgeh n 0 ) : hqgeh ( m × n ) 0 .
Proof . intros . destruct ( hqgehchoice _ _ isn ) as [ gn | en ] .

apply ( hqmultgeh0gth0 ism gn ) .

rewrite en . rewrite ( hqmultx0 m ) . apply isreflhqgeh . Defined .

Lemma hqmultgth0lth0 { m n : hq } ( ism : hqgth m 0 ) ( isn : hqlth n 0 ) : hqlth ( m × n ) 0 .
Proof . intros . apply ( ringmultgt0lt0 hq isplushrelhqgth isringmulthqgth ) . apply ism . apply isn . Defined .

Lemma hqmultgth0leh0 { m n : hq } ( ism : hqgth m 0 ) ( isn : hqleh n 0 ) : hqleh ( m × n ) 0 .
Proof . intros . destruct ( hqlehchoice _ _ isn ) as [ ln | en ] .

apply ( hqlthtoleh _ _ ( hqmultgth0lth0 ism ln ) ) .

rewrite en . rewrite ( hqmultx0 m ) . apply isreflhqleh . Defined .

Lemma hqmultgeh0lth0 { m n : hq } ( ism : hqgeh m 0 ) ( isn : hqlth n 0 ) : hqleh ( m × n ) 0 .
Proof . intros . destruct ( hqlehchoice _ _ ism ) as [ lm | em ] .

apply ( hqlthtoleh _ _ ( hqmultgth0lth0 lm isn ) ) .

destruct em . rewrite ( hqmult0x _ ) . apply isreflhqleh . Defined .

Lemma hqmultgeh0leh0 { m n : hq } ( ism : hqgeh m 0 ) ( isn : hqleh n 0 ) : hqleh ( m × n ) 0 .
Proof . intros . destruct ( hqlehchoice _ _ isn ) as [ ln | en ] .

apply ( hqmultgeh0lth0 ism ln ) .

rewrite en . rewrite ( hqmultx0 m ) . apply isreflhqleh . Defined .

Lemma hqmultlth0gth0 { m n : hq } ( ism : hqlth m 0 ) ( isn : hqgth n 0 ) : hqlth ( m × n ) 0 .
Proof . intros . rewrite ( hqmultcomm ) . apply hqmultgth0lth0 . apply isn . apply ism . Defined .

Lemma hqmultlth0geh0 { m n : hq } ( ism : hqlth m 0 ) ( isn : hqgeh n 0 ) : hqleh ( m × n ) 0 .
Proof . intros . rewrite ( hqmultcomm ) . apply hqmultgeh0lth0 . apply isn . apply ism . Defined .

Lemma hqmultleh0gth0 { m n : hq } ( ism : hqleh m 0 ) ( isn : hqgth n 0 ) : hqleh ( m × n ) 0 .
Proof . intros . rewrite ( hqmultcomm ) . apply hqmultgth0leh0 . apply isn . apply ism . Defined .

Lemma hqmultleh0geh0 { m n : hq } ( ism : hqleh m 0 ) ( isn : hqgeh n 0 ) : hqleh ( m × n ) 0 .
Proof . intros . rewrite ( hqmultcomm ) . apply hqmultgeh0leh0 . apply isn . apply ism . Defined .

Lemma hqmultlth0lth0 { m n : hq } ( ism : hqlth m 0 ) ( isn : hqlth n 0 ) : hqgth ( m × n ) 0 .
Proof . intros . assert ( ism' := hqlth0andminus ism ) . assert ( isn' := hqlth0andminus isn ) . assert ( int := isringmulthqgth _ _ ism' isn' ) . rewrite ( ringmultminusminus hq ) in int . apply int . Defined .

Lemma hqmultlth0leh0 { m n : hq } ( ism : hqlth m 0 ) ( isn : hqleh n 0 ) : hqgeh ( m × n ) 0 .
Proof . intros . intros . destruct ( hqlehchoice _ _ isn ) as [ ln | en ] .

apply ( hqgthtogeh _ _ ( hqmultlth0lth0 ism ln ) ) .

rewrite en . rewrite ( hqmultx0 m ) . apply isreflhqgeh . Defined .

Lemma hqmultleh0lth0 { m n : hq } ( ism : hqleh m 0 ) ( isn : hqlth n 0 ) : hqgeh ( m × n ) 0 .
Proof . intros . destruct ( hqlehchoice _ _ ism ) as [ lm | em ] .

apply ( hqgthtogeh _ _ ( hqmultlth0lth0 lm isn ) ) .

rewrite em . rewrite ( hqmult0x _ ) . apply isreflhqgeh . Defined .

Lemma hqmultleh0leh0 { m n : hq } ( ism : hqleh m 0 ) ( isn : hqleh n 0 ) : hqgeh ( m × n ) 0 .
Proof . intros . destruct ( hqlehchoice _ _ isn ) as [ ln | en ] .

apply ( hqmultleh0lth0 ism ln ) .

rewrite en . rewrite ( hqmultx0 m ) . apply isreflhqgeh . Defined .

Cancellation properties of multiplication on hq


Lemma hqmultlcan ( a b c : hq ) ( ne : neg ( c = 0 ) ) ( e : paths ( c × a ) ( c × b ) ) : a = b .
Proof . intros . apply ( intdomlcan hq _ _ _ ne e ) . Defined .

Lemma hqmultrcan ( a b c : hq ) ( ne : neg ( c = 0 ) ) ( e : paths ( a × c ) ( b × c ) ) : a = b .
Proof . intros . apply ( intdomrcan hq _ _ _ ne e ) . Defined .

Positive rationals


Definition hqpos : @subabmonoid hqmultabmonoid .
Proof . split with ( λ x, hqgth x 0 ) . split . intros x1 x2 . apply ( isringmulthqgth ) . apply ( pr2 x1 ) . apply ( pr2 x2 ) . apply ( ct ( hqgth , isdecrelhqgth , 1 , 0 ) ) . Defined .

Canonical ring homomorphism from hz to hq


Definition hztohq : hz hq := tofldfrac hzintdom isdeceqhz.

Definition isinclhztohq : isincl hztohq := isincltofldfrac hzintdom isdeceqhz .

Definition hztohqandneq ( n m : hz ) ( is : hzneq n m ) : hqneq ( hztohq n ) ( hztohq m ) := negf ( invmaponpathsincl _ isinclhztohq n m ) is .

Definition hztohqand0 : paths ( hztohq 0%hz ) 0 := idpath _ .

Definition hztohqand1 : paths ( hztohq 1%hz ) 1 := idpath _ .

Definition hztohqandplus ( n m : hz ) : paths ( hztohq ( n + m )%hz ) ( hztohq n + hztohq m ) := isbinop1funtofldfrac hzintdom isdeceqhz n m .

Definition hztohqandminus ( n m : hz ) : paths ( hztohq ( n - m )%hz ) ( hztohq n - hztohq m ) := tofldfracandminus hzintdom isdeceqhz n m .

Definition hztohqandmult ( n m : hz ) : paths ( hztohq ( n × m )%hz ) ( hztohq n × hztohq m ) := isbinop2funtofldfrac hzintdom isdeceqhz n m .

Definition hztohqandgth ( n m : hz ) ( is : hzgth n m ) : hqgth ( hztohq n ) ( hztohq m ) := iscomptofldfrac hzintdom isdeceqhz isplushrelhzgth isringmulthzgth ( ct ( hzgth , isdecrelhzgth , 1 , 0 )%hz ) ( hzneqchoice ) ( isasymmhzgth ) n m is .

Definition hztohqandlth ( n m : hz ) ( is : hzlth n m ) : hqlth ( hztohq n ) ( hztohq m ) := hztohqandgth m n is .

Definition hztohqandleh ( n m : hz ) ( is : hzleh n m ) : hqleh ( hztohq n ) ( hztohq m ) .
Proof . intros . destruct ( hzlehchoice _ _ is ) as [ l | e ] . apply ( hqlthtoleh _ _ ( hztohqandlth _ _ l ) ) . rewrite e . apply ( isreflhqleh ) . Defined .

Definition hztohqandgeh ( n m : hz ) ( is : hzgeh n m ) : hqgeh ( hztohq n ) ( hztohq m ) := hztohqandleh _ _ is .

Integral part of a rational


Definition intpartint0 ( xa : dirprod hz ( intdomnonzerosubmonoid hzintdom ) ) : nat := natdiv ( hzabsval (pr1 xa ) ) ( hzabsval ( pr1 ( pr2 xa ) ) ) .

Lemma iscompintpartint0 : iscomprelfun ( eqrelabmonoidfrac hzmultabmonoid ( intdomnonzerosubmonoid hzintdom ) ) intpartint0 .
Proof . Opaque hq. unfold iscomprelfun . intros xa1 xa2 . set ( x1 := pr1 xa1 ) . set ( aa1 := pr2 xa1 ) . set ( a1 := pr1 aa1 ) . set ( x2 := pr1 xa2 ) . set ( aa2 := pr2 xa2 ) . set ( a2 := pr1 aa2 ) . simpl . apply ( @hinhuniv _ ( make_hProp _ ( setproperty natset _ _ ) ) ) . intro t2 . assert ( e := pr2 t2 ) .

simpl in e . assert ( e' := ( maponpaths hzabsval ( hzmultrcan _ _ _ ( pr2 ( pr1 t2 ) ) e ) ) : paths ( hzabsval ( x1 × a2 )%hz ) ( hzabsval ( x2 × a1 )%hz ) ) . clear e . clear t2 . rewrite ( pathsinv0 ( hzabsvalandmult _ _ ) ) in e' . rewrite ( pathsinv0 ( hzabsvalandmult _ _ ) ) in e' .

unfold intpartint0 . simpl . change ( paths ( natdiv ( hzabsval x1 ) ( hzabsval a1 ) ) ( natdiv ( hzabsval x2 ) ( hzabsval a2 ) ) ) . rewrite ( pathsinv0 ( natdivandmultr (hzabsval x1 ) (hzabsval a1 ) ( hzabsval a2 ) ( hzabsvalneq0 ( pr2 aa1 ) ) ( natneq0andmult _ _ ( hzabsvalneq0 (pr2 aa1) ) ( hzabsvalneq0 (pr2 aa2) ) ) ) ) . rewrite ( pathsinv0 ( natdivandmultr (hzabsval x2 ) (hzabsval a2 ) ( hzabsval a1 ) ( hzabsvalneq0 ( pr2 aa2 ) ) ( natneq0andmult _ _ ( hzabsvalneq0 (pr2 aa2) ) ( hzabsvalneq0 (pr2 aa1) ) ) ) ) . rewrite ( natmultcomm ( hzabsval a1 ) ( hzabsval a2 ) ) . rewrite e' . apply idpath . Transparent hq . Defined .

Opaque iscompintpartint0 .

Definition intpart0 : hq nat := setquotuniv ( eqrelabmonoidfrac hzmultabmonoid (intdomnonzerosubmonoid hzintdom) ) natset _
     ( iscompintpartint0 ) .

Definition intpart ( x : hq ) : hz .
Proof . destruct ( hqlthorgeh x 0 ) as [ l | ge ] . destruct ( isdeceqhq ( x + ( hztohq ( nattohz ( intpart0 x ) ) ) ) 0 ) as [ e | ne ] .

apply ( - (nattohz (intpart0 x)))%hz .

apply ( - ( 1 + (nattohz (intpart0 x)) ) )%hz .

apply (nattohz (intpart0 x)) . Defined .