Library UniMath.CategoryTheory.categories.rigs
Require Import UniMath.Foundations.PartD.
Require Import UniMath.Foundations.Propositions.
Require Import UniMath.Foundations.Sets.
Require Import UniMath.Foundations.UnivalenceAxiom.
Require Import UniMath.Algebra.BinaryOperations.
Require Import UniMath.Algebra.Monoids.
Require Import UniMath.Algebra.RigsAndRings.
Require Import UniMath.CategoryTheory.Core.Categories.
Require Import UniMath.CategoryTheory.Core.Isos.
Require Import UniMath.CategoryTheory.Core.Univalence.
Local Open Scope cat.
Section def_rig_precategory.
Definition rig_fun_space (A B : rig) : hSet := make_hSet (rigfun A B) (isasetrigfun A B).
Definition rig_precategory_ob_mor : precategory_ob_mor :=
tpair (λ ob : UU, ob → ob → UU) rig (λ A B : rig, rig_fun_space A B).
Definition rig_precategory_data : precategory_data :=
make_precategory_data
rig_precategory_ob_mor (λ (X : rig), (rigisotorigfun (idrigiso X)))
(fun (X Y Z : rig) (f : rigfun X Y) (g : rigfun Y Z) ⇒ rigfuncomp f g).
Local Definition rig_id_left (X Y : rig) (f : rigfun X Y) :
rigfuncomp (rigisotorigfun (idrigiso X)) f = f.
Proof.
use rigfun_paths. use idpath.
Defined.
Opaque rig_id_left.
Local Definition rig_id_right (X Y : rig) (f : rigfun X Y) :
rigfuncomp f (rigisotorigfun (idrigiso Y)) = f.
Proof.
use rigfun_paths. use idpath.
Defined.
Opaque rig_id_right.
Local Definition rig_assoc (X Y Z W : rig) (f : rigfun X Y) (g : rigfun Y Z) (h : rigfun Z W) :
rigfuncomp f (rigfuncomp g h) = rigfuncomp (rigfuncomp f g) h.
Proof.
use rigfun_paths. use idpath.
Defined.
Opaque rig_assoc.
Lemma is_precategory_rig_precategory_data : is_precategory rig_precategory_data.
Proof.
use make_is_precategory_one_assoc.
- intros a b f. use rig_id_left.
- intros a b f. use rig_id_right.
- intros a b c d f g h. use rig_assoc.
Qed.
Definition rig_precategory : precategory :=
make_precategory rig_precategory_data is_precategory_rig_precategory_data.
Lemma has_homsets_rig_precategory : has_homsets rig_precategory.
Proof.
intros X Y. use isasetrigfun.
Qed.
End def_rig_precategory.
Definition rig_fun_space (A B : rig) : hSet := make_hSet (rigfun A B) (isasetrigfun A B).
Definition rig_precategory_ob_mor : precategory_ob_mor :=
tpair (λ ob : UU, ob → ob → UU) rig (λ A B : rig, rig_fun_space A B).
Definition rig_precategory_data : precategory_data :=
make_precategory_data
rig_precategory_ob_mor (λ (X : rig), (rigisotorigfun (idrigiso X)))
(fun (X Y Z : rig) (f : rigfun X Y) (g : rigfun Y Z) ⇒ rigfuncomp f g).
Local Definition rig_id_left (X Y : rig) (f : rigfun X Y) :
rigfuncomp (rigisotorigfun (idrigiso X)) f = f.
Proof.
use rigfun_paths. use idpath.
Defined.
Opaque rig_id_left.
Local Definition rig_id_right (X Y : rig) (f : rigfun X Y) :
rigfuncomp f (rigisotorigfun (idrigiso Y)) = f.
Proof.
use rigfun_paths. use idpath.
Defined.
Opaque rig_id_right.
Local Definition rig_assoc (X Y Z W : rig) (f : rigfun X Y) (g : rigfun Y Z) (h : rigfun Z W) :
rigfuncomp f (rigfuncomp g h) = rigfuncomp (rigfuncomp f g) h.
Proof.
use rigfun_paths. use idpath.
Defined.
Opaque rig_assoc.
Lemma is_precategory_rig_precategory_data : is_precategory rig_precategory_data.
Proof.
use make_is_precategory_one_assoc.
- intros a b f. use rig_id_left.
- intros a b f. use rig_id_right.
- intros a b c d f g h. use rig_assoc.
Qed.
Definition rig_precategory : precategory :=
make_precategory rig_precategory_data is_precategory_rig_precategory_data.
Lemma has_homsets_rig_precategory : has_homsets rig_precategory.
Proof.
intros X Y. use isasetrigfun.
Qed.
End def_rig_precategory.
Lemma rig_iso_is_equiv (A B : ob rig_precategory) (f : iso A B) : isweq (pr1 (pr1 f)).
Proof.
use isweq_iso.
- exact (pr1rigfun _ _ (inv_from_iso f)).
- intros x.
use (toforallpaths _ _ _ (subtypeInjectivity _ _ _ _ (iso_inv_after_iso f)) x).
intros x0. use isapropisrigfun.
- intros x.
use (toforallpaths _ _ _ (subtypeInjectivity _ _ _ _ (iso_after_iso_inv f)) x).
intros x0. use isapropisrigfun.
Defined.
Opaque rig_iso_is_equiv.
Lemma rig_iso_equiv (X Y : ob rig_precategory) : iso X Y → rigiso (X : rig) (Y : rig).
Proof.
intro f.
use make_rigiso.
- exact (make_weq (pr1 (pr1 f)) (rig_iso_is_equiv X Y f)).
- exact (pr2 (pr1 f)).
Defined.
Lemma rig_equiv_is_iso (X Y : ob rig_precategory) (f : rigiso (X : rig) (Y : rig)) :
@is_iso rig_precategory X Y (rigfunconstr (pr2 f)).
Proof.
use is_iso_qinv.
- exact (rigfunconstr (pr2 (invrigiso f))).
- use make_is_inverse_in_precat.
+ use rigfun_paths. use funextfun. intros x. use homotinvweqweq.
+ use rigfun_paths. use funextfun. intros y. use homotweqinvweq.
Defined.
Opaque rig_equiv_is_iso.
Lemma rig_equiv_iso (X Y : ob rig_precategory) : rigiso (X : rig) (Y : rig) → iso X Y.
Proof.
intros f. exact (@make_iso rig_precategory X Y (rigfunconstr (pr2 f))
(rig_equiv_is_iso X Y f)).
Defined.
Lemma rig_iso_equiv_is_equiv (X Y : rig_precategory) : isweq (rig_iso_equiv X Y).
Proof.
use isweq_iso.
- exact (rig_equiv_iso X Y).
- intros x. use eq_iso. use rigfun_paths. use idpath.
- intros y. use rigiso_paths. use subtypePath.
+ intros x0. use isapropisweq.
+ use idpath.
Defined.
Opaque rig_iso_equiv_is_equiv.
Definition rig_iso_equiv_weq (X Y : ob rig_precategory) :
weq (iso X Y) (rigiso (X : rig) (Y : rig)).
Proof.
use make_weq.
- exact (rig_iso_equiv X Y).
- exact (rig_iso_equiv_is_equiv X Y).
Defined.
Lemma rig_equiv_iso_is_equiv (X Y : ob rig_precategory) : isweq (rig_equiv_iso X Y).
Proof.
use isweq_iso.
- exact (rig_iso_equiv X Y).
- intros y. use rigiso_paths. use subtypePath.
+ intros x0. use isapropisweq.
+ use idpath.
- intros x. use eq_iso. use rigfun_paths. use idpath.
Defined.
Opaque rig_equiv_iso_is_equiv.
Definition rig_equiv_weq_iso (X Y : ob rig_precategory) :
(rigiso (X : rig) (Y : rig)) ≃ (iso X Y).
Proof.
use make_weq.
- exact (rig_equiv_iso X Y).
- exact (rig_equiv_iso_is_equiv X Y).
Defined.
Definition rig_precategory_isweq (X Y : ob rig_precategory) : isweq (λ p : X = Y, idtoiso p).
Proof.
use (@isweqhomot
(X = Y) (iso X Y)
(pr1weq (weqcomp (rig_univalence X Y) (rig_equiv_weq_iso X Y)))
_ _ (weqproperty (weqcomp (rig_univalence X Y)
(rig_equiv_weq_iso X Y)))).
intros e. induction e.
use (pathscomp0 weqcomp_to_funcomp_app).
use total2_paths_f.
- use idpath.
- use proofirrelevance. use isaprop_is_iso.
Defined.
Opaque rig_precategory_isweq.
Definition rig_precategory_is_univalent : is_univalent rig_precategory.
Proof.
use make_is_univalent.
- intros X Y. exact (rig_precategory_isweq X Y).
- exact has_homsets_rig_precategory.
Defined.
Definition rig_category : univalent_category :=
make_univalent_category rig_precategory rig_precategory_is_univalent.
End def_rig_category.