Library UniMath.CategoryTheory.categories.intdoms
Require Import UniMath.Foundations.PartD.
Require Import UniMath.Foundations.Propositions.
Require Import UniMath.Foundations.Sets.
Require Import UniMath.Foundations.UnivalenceAxiom.
Require Import UniMath.Algebra.BinaryOperations.
Require Import UniMath.Algebra.Monoids.
Require Import UniMath.Algebra.RigsAndRings.
Require Import UniMath.Algebra.Domains_and_Fields.
Require Import UniMath.CategoryTheory.Core.Categories.
Require Import UniMath.CategoryTheory.Core.Isos.
Require Import UniMath.CategoryTheory.Core.Univalence.
Local Open Scope cat.
Section def_intdom_precategory.
Definition intdom_fun_space (A B : intdom) : hSet := make_hSet (ringfun A B) (isasetrigfun A B).
Definition intdom_precategory_ob_mor : precategory_ob_mor :=
tpair (λ ob : UU, ob → ob → UU) intdom (λ A B : intdom, intdom_fun_space A B).
Definition intdom_precategory_data : precategory_data :=
make_precategory_data
intdom_precategory_ob_mor (λ (X : intdom), (rigisotorigfun (idrigiso X)))
(fun (X Y Z : intdom) (f : ringfun X Y) (g : ringfun Y Z) ⇒ rigfuncomp f g).
Local Lemma intdom_id_left (X Y : intdom) (f : ringfun X Y) :
rigfuncomp (rigisotorigfun (idrigiso X)) f = f.
Proof.
use rigfun_paths. use idpath.
Defined.
Opaque intdom_id_left.
Local Lemma intdom_id_right (X Y : intdom) (f : ringfun X Y) :
rigfuncomp f (rigisotorigfun (idrigiso Y)) = f.
Proof.
use rigfun_paths. use idpath.
Defined.
Opaque intdom_id_right.
Local Lemma intdom_assoc (X Y Z W : intdom) (f : ringfun X Y) (g : ringfun Y Z) (h : ringfun Z W) :
rigfuncomp f (rigfuncomp g h) = rigfuncomp (rigfuncomp f g) h.
Proof.
use rigfun_paths. use idpath.
Defined.
Opaque intdom_assoc.
Lemma is_precategory_intdom_precategory_data : is_precategory intdom_precategory_data.
Proof.
use make_is_precategory_one_assoc.
- intros a b f. use intdom_id_left.
- intros a b f. use intdom_id_right.
- intros a b c d f g h. use intdom_assoc.
Qed.
Definition intdom_precategory : precategory :=
make_precategory intdom_precategory_data is_precategory_intdom_precategory_data.
Lemma has_homsets_intdom_precategory : has_homsets intdom_precategory.
Proof.
intros X Y. use isasetrigfun.
Qed.
End def_intdom_precategory.
Definition intdom_fun_space (A B : intdom) : hSet := make_hSet (ringfun A B) (isasetrigfun A B).
Definition intdom_precategory_ob_mor : precategory_ob_mor :=
tpair (λ ob : UU, ob → ob → UU) intdom (λ A B : intdom, intdom_fun_space A B).
Definition intdom_precategory_data : precategory_data :=
make_precategory_data
intdom_precategory_ob_mor (λ (X : intdom), (rigisotorigfun (idrigiso X)))
(fun (X Y Z : intdom) (f : ringfun X Y) (g : ringfun Y Z) ⇒ rigfuncomp f g).
Local Lemma intdom_id_left (X Y : intdom) (f : ringfun X Y) :
rigfuncomp (rigisotorigfun (idrigiso X)) f = f.
Proof.
use rigfun_paths. use idpath.
Defined.
Opaque intdom_id_left.
Local Lemma intdom_id_right (X Y : intdom) (f : ringfun X Y) :
rigfuncomp f (rigisotorigfun (idrigiso Y)) = f.
Proof.
use rigfun_paths. use idpath.
Defined.
Opaque intdom_id_right.
Local Lemma intdom_assoc (X Y Z W : intdom) (f : ringfun X Y) (g : ringfun Y Z) (h : ringfun Z W) :
rigfuncomp f (rigfuncomp g h) = rigfuncomp (rigfuncomp f g) h.
Proof.
use rigfun_paths. use idpath.
Defined.
Opaque intdom_assoc.
Lemma is_precategory_intdom_precategory_data : is_precategory intdom_precategory_data.
Proof.
use make_is_precategory_one_assoc.
- intros a b f. use intdom_id_left.
- intros a b f. use intdom_id_right.
- intros a b c d f g h. use intdom_assoc.
Qed.
Definition intdom_precategory : precategory :=
make_precategory intdom_precategory_data is_precategory_intdom_precategory_data.
Lemma has_homsets_intdom_precategory : has_homsets intdom_precategory.
Proof.
intros X Y. use isasetrigfun.
Qed.
End def_intdom_precategory.
Lemma intdom_iso_is_equiv (A B : ob intdom_precategory) (f : iso A B) : isweq (pr1 (pr1 f)).
Proof.
use isweq_iso.
- exact (pr1rigfun _ _ (inv_from_iso f)).
- intros x.
use (toforallpaths _ _ _ (subtypeInjectivity _ _ _ _ (iso_inv_after_iso f)) x).
intros x0. use isapropisrigfun.
- intros x.
use (toforallpaths _ _ _ (subtypeInjectivity _ _ _ _ (iso_after_iso_inv f)) x).
intros x0. use isapropisrigfun.
Defined.
Opaque intdom_iso_is_equiv.
Lemma intdom_iso_equiv (X Y : ob intdom_precategory) : iso X Y → ringiso (X : intdom) (Y : intdom).
Proof.
intro f.
use make_ringiso.
- exact (make_weq (pr1 (pr1 f)) (intdom_iso_is_equiv X Y f)).
- exact (pr2 (pr1 f)).
Defined.
Lemma intdom_equiv_is_iso (X Y : ob intdom_precategory) (f : ringiso (X : intdom) (Y : intdom)) :
@is_iso intdom_precategory X Y (ringfunconstr (pr2 f)).
Proof.
use is_iso_qinv.
- exact (ringfunconstr (pr2 (invrigiso f))).
- use make_is_inverse_in_precat.
+ use rigfun_paths. use funextfun. intros x. use homotinvweqweq.
+ use rigfun_paths. use funextfun. intros y. use homotweqinvweq.
Defined.
Opaque intdom_equiv_is_iso.
Lemma intdom_equiv_iso (X Y : ob intdom_precategory) : ringiso (X : intdom) (Y : intdom) → iso X Y.
Proof.
intros f. exact (@make_iso intdom_precategory X Y (ringfunconstr (pr2 f))
(intdom_equiv_is_iso X Y f)).
Defined.
Lemma intdom_iso_equiv_is_equiv (X Y : intdom_precategory) : isweq (intdom_iso_equiv X Y).
Proof.
use isweq_iso.
- exact (intdom_equiv_iso X Y).
- intros x. use eq_iso. use rigfun_paths. use idpath.
- intros y. use rigiso_paths. use subtypePath.
+ intros x0. use isapropisweq.
+ use idpath.
Defined.
Opaque intdom_iso_equiv_is_equiv.
Definition intdom_iso_equiv_weq (X Y : ob intdom_precategory) :
weq (iso X Y) (ringiso (X : intdom) (Y : intdom)).
Proof.
use make_weq.
- exact (intdom_iso_equiv X Y).
- exact (intdom_iso_equiv_is_equiv X Y).
Defined.
Lemma intdom_equiv_iso_is_equiv (X Y : ob intdom_precategory) :
isweq (intdom_equiv_iso X Y).
Proof.
use isweq_iso.
- exact (intdom_iso_equiv X Y).
- intros y. use rigiso_paths. use subtypePath.
+ intros x0. use isapropisweq.
+ use idpath.
- intros x. use eq_iso. use rigfun_paths. use idpath.
Defined.
Opaque intdom_equiv_iso_is_equiv.
Definition intdom_equiv_weq_iso (X Y : ob intdom_precategory) :
(ringiso (X : intdom) (Y : intdom)) ≃ (iso X Y).
Proof.
use make_weq.
- exact (intdom_equiv_iso X Y).
- exact (intdom_equiv_iso_is_equiv X Y).
Defined.
Definition intdom_precategory_isweq (X Y : ob intdom_precategory) :
isweq (λ p : X = Y, idtoiso p).
Proof.
use (@isweqhomot
(X = Y) (iso X Y)
(pr1weq (weqcomp (intdom_univalence X Y) (intdom_equiv_weq_iso X Y)))
_ _ (weqproperty (weqcomp (intdom_univalence X Y) (intdom_equiv_weq_iso X Y)))).
intros e. induction e.
use (pathscomp0 weqcomp_to_funcomp_app).
use total2_paths_f.
- use idpath.
- use proofirrelevance. use isaprop_is_iso.
Defined.
Opaque intdom_precategory_isweq.
Definition intdom_precategory_is_univalent : is_univalent intdom_precategory.
Proof.
use make_is_univalent.
- intros X Y. exact (intdom_precategory_isweq X Y).
- exact has_homsets_intdom_precategory.
Defined.
Definition intdom_category : univalent_category :=
make_univalent_category intdom_precategory intdom_precategory_is_univalent.
End def_intdom_category.