Library UniMath.CategoryTheory.categories.grs
Require Import UniMath.Foundations.PartD.
Require Import UniMath.Foundations.Propositions.
Require Import UniMath.Foundations.Sets.
Require Import UniMath.Foundations.UnivalenceAxiom.
Require Import UniMath.Algebra.BinaryOperations.
Require Import UniMath.Algebra.Monoids.
Require Import UniMath.Algebra.Groups.
Require Import UniMath.CategoryTheory.Core.Categories.
Require Import UniMath.CategoryTheory.Core.Isos.
Require Import UniMath.CategoryTheory.Core.Univalence.
Local Open Scope cat.
Require Import UniMath.CategoryTheory.Core.Functors.
Section def_gr_precategory.
Definition gr_fun_space (A B : gr) : hSet := make_hSet (monoidfun A B) (isasetmonoidfun A B).
Definition gr_precategory_ob_mor : precategory_ob_mor :=
tpair (λ ob : UU, ob → ob → UU) gr (λ A B : gr, gr_fun_space A B).
Definition gr_precategory_data : precategory_data :=
make_precategory_data
gr_precategory_ob_mor (λ (X : gr), ((idmonoidiso X) : monoidfun X X))
(fun (X Y Z : gr) (f : monoidfun X Y) (g : monoidfun Y Z) ⇒ monoidfuncomp f g).
Local Lemma gr_id_left (X Y : gr) (f : monoidfun X Y) : monoidfuncomp (idmonoidiso X) f = f.
Proof.
use monoidfun_paths. use idpath.
Defined.
Opaque gr_id_left.
Local Lemma gr_id_right (X Y : gr) (f : monoidfun X Y) : monoidfuncomp f (idmonoidiso Y) = f.
Proof.
use monoidfun_paths. use idpath.
Defined.
Opaque gr_id_right.
Local Lemma gr_assoc (X Y Z W : gr) (f : monoidfun X Y) (g : monoidfun Y Z) (h : monoidfun Z W) :
monoidfuncomp f (monoidfuncomp g h) = monoidfuncomp (monoidfuncomp f g) h.
Proof.
use monoidfun_paths. use idpath.
Defined.
Opaque gr_assoc.
Lemma is_precategory_gr_precategory_data : is_precategory gr_precategory_data.
Proof.
use make_is_precategory_one_assoc.
- intros a b f. use gr_id_left.
- intros a b f. use gr_id_right.
- intros a b c d f g h. use gr_assoc.
Qed.
Definition gr_precategory : precategory :=
make_precategory gr_precategory_data is_precategory_gr_precategory_data.
Lemma has_homsets_gr_precategory : has_homsets gr_precategory.
Proof.
intros X Y. use isasetmonoidfun.
Qed.
End def_gr_precategory.
Definition gr_fun_space (A B : gr) : hSet := make_hSet (monoidfun A B) (isasetmonoidfun A B).
Definition gr_precategory_ob_mor : precategory_ob_mor :=
tpair (λ ob : UU, ob → ob → UU) gr (λ A B : gr, gr_fun_space A B).
Definition gr_precategory_data : precategory_data :=
make_precategory_data
gr_precategory_ob_mor (λ (X : gr), ((idmonoidiso X) : monoidfun X X))
(fun (X Y Z : gr) (f : monoidfun X Y) (g : monoidfun Y Z) ⇒ monoidfuncomp f g).
Local Lemma gr_id_left (X Y : gr) (f : monoidfun X Y) : monoidfuncomp (idmonoidiso X) f = f.
Proof.
use monoidfun_paths. use idpath.
Defined.
Opaque gr_id_left.
Local Lemma gr_id_right (X Y : gr) (f : monoidfun X Y) : monoidfuncomp f (idmonoidiso Y) = f.
Proof.
use monoidfun_paths. use idpath.
Defined.
Opaque gr_id_right.
Local Lemma gr_assoc (X Y Z W : gr) (f : monoidfun X Y) (g : monoidfun Y Z) (h : monoidfun Z W) :
monoidfuncomp f (monoidfuncomp g h) = monoidfuncomp (monoidfuncomp f g) h.
Proof.
use monoidfun_paths. use idpath.
Defined.
Opaque gr_assoc.
Lemma is_precategory_gr_precategory_data : is_precategory gr_precategory_data.
Proof.
use make_is_precategory_one_assoc.
- intros a b f. use gr_id_left.
- intros a b f. use gr_id_right.
- intros a b c d f g h. use gr_assoc.
Qed.
Definition gr_precategory : precategory :=
make_precategory gr_precategory_data is_precategory_gr_precategory_data.
Lemma has_homsets_gr_precategory : has_homsets gr_precategory.
Proof.
intros X Y. use isasetmonoidfun.
Qed.
End def_gr_precategory.
Lemma gr_iso_is_equiv (A B : ob gr_precategory) (f : iso A B) : isweq (pr1 (pr1 f)).
Proof.
use isweq_iso.
- exact (pr1monoidfun _ _ (inv_from_iso f)).
- intros x.
use (toforallpaths _ _ _ (subtypeInjectivity _ _ _ _ (iso_inv_after_iso f)) x).
intros x0. use isapropismonoidfun.
- intros x.
use (toforallpaths _ _ _ (subtypeInjectivity _ _ _ _ (iso_after_iso_inv f)) x).
intros x0. use isapropismonoidfun.
Defined.
Opaque gr_iso_is_equiv.
Lemma gr_iso_equiv (X Y : ob gr_precategory) : iso X Y → monoidiso (X : gr) (Y : gr).
Proof.
intro f.
use make_monoidiso.
- exact (make_weq (pr1 (pr1 f)) (gr_iso_is_equiv X Y f)).
- exact (pr2 (pr1 f)).
Defined.
Lemma gr_equiv_is_iso (X Y : ob gr_precategory) (f : monoidiso (X : gr) (Y : gr)) :
@is_iso gr_precategory X Y (monoidfunconstr (pr2 f)).
Proof.
use is_iso_qinv.
- exact (monoidfunconstr (pr2 (invmonoidiso f))).
- use make_is_inverse_in_precat.
+ use monoidfun_paths. use funextfun. intros x. use homotinvweqweq.
+ use monoidfun_paths. use funextfun. intros y. use homotweqinvweq.
Defined.
Opaque gr_equiv_is_iso.
Lemma gr_equiv_iso (X Y : ob gr_precategory) : monoidiso (X : gr) (Y : gr) → iso X Y.
Proof.
intros f. exact (@make_iso gr_precategory X Y (monoidfunconstr (pr2 f))
(gr_equiv_is_iso X Y f)).
Defined.
Lemma gr_iso_equiv_is_equiv (X Y : gr_precategory) : isweq (gr_iso_equiv X Y).
Proof.
use isweq_iso.
- exact (gr_equiv_iso X Y).
- intros x. use eq_iso. use monoidfun_paths. use idpath.
- intros y. use monoidiso_paths. use subtypePath.
+ intros x0. use isapropisweq.
+ use idpath.
Defined.
Opaque gr_iso_equiv_is_equiv.
Definition gr_iso_equiv_weq (X Y : ob gr_precategory) :
weq (iso X Y) (monoidiso (X : gr) (Y : gr)).
Proof.
use make_weq.
- exact (gr_iso_equiv X Y).
- exact (gr_iso_equiv_is_equiv X Y).
Defined.
Lemma gr_equiv_iso_is_equiv (X Y : ob gr_precategory) : isweq (gr_equiv_iso X Y).
Proof.
use isweq_iso.
- exact (gr_iso_equiv X Y).
- intros y. use monoidiso_paths. use subtypePath.
+ intros x0. use isapropisweq.
+ use idpath.
- intros x. use eq_iso. use monoidfun_paths. use idpath.
Defined.
Opaque gr_equiv_iso_is_equiv.
Definition gr_equiv_weq_iso (X Y : ob gr_precategory) :
(monoidiso (X : gr) (Y : gr)) ≃ (iso X Y).
Proof.
use make_weq.
- exact (gr_equiv_iso X Y).
- exact (gr_equiv_iso_is_equiv X Y).
Defined.
Definition gr_precategory_isweq (X Y : ob gr_precategory) : isweq (λ p : X = Y, idtoiso p).
Proof.
use (@isweqhomot
(X = Y) (iso X Y)
(pr1weq (weqcomp (gr_univalence X Y) (gr_equiv_weq_iso X Y)))
_ _ (weqproperty (weqcomp (gr_univalence X Y) (gr_equiv_weq_iso X Y)))).
intros e. induction e.
use (pathscomp0 weqcomp_to_funcomp_app).
use total2_paths_f.
- use idpath.
- use proofirrelevance. use isaprop_is_iso.
Defined.
Opaque gr_precategory_isweq.
Definition gr_precategory_is_univalent : is_univalent gr_precategory.
Proof.
use make_is_univalent.
- intros X Y. exact (gr_precategory_isweq X Y).
- exact has_homsets_gr_precategory.
Defined.
Definition gr_category : univalent_category
:= make_univalent_category gr_precategory gr_precategory_is_univalent.
End def_gr_category.