Library UniMath.CategoryTheory.Monoidal.MonoidalCategories
Monoidal categories
Based on an implementation by Anthony Bordg.
Behaviour w.r.t. to swapped tensor product added by Ralph Matthes in 2019
Require Import UniMath.Foundations.PartD.
Require Import UniMath.CategoryTheory.Core.Categories.
Require Import UniMath.CategoryTheory.Core.Isos.
Require Import UniMath.CategoryTheory.Core.NaturalTransformations.
Require Import UniMath.CategoryTheory.Core.Functors.
Require Import UniMath.CategoryTheory.ProductCategory.
Require Import UniMath.CategoryTheory.PrecategoryBinProduct.
Require Import UniMath.CategoryTheory.whiskering.
Local Open Scope cat.
Notation "'id' X" := (identity X) (at level 30).
Notation "C ⊠ D" := (precategory_binproduct C D) (at level 38).
Notation "( c , d )" := (make_precatbinprod c d).
Notation "( f #, g )" := (precatbinprodmor f g).
Section Monoidal_Precat.
Context {C : precategory} (tensor : C ⊠ C ⟶ C) (I : C).
Notation "X ⊗ Y" := (tensor (X, Y)).
Notation "f #⊗ g" := (#tensor (f #, g)) (at level 31).
Definition tensor_id {X Y : C} : id X #⊗ id Y = id (X ⊗ Y).
Proof.
rewrite binprod_id.
rewrite (functor_id tensor).
apply idpath.
Defined.
Definition tensor_comp {X Y Z X' Y' Z' : C} (f : X --> Y) (g : Y --> Z) (f' : X' --> Y') (g' : Y' --> Z') :
(f · g) #⊗ (f' · g') = f #⊗ f' · g #⊗ g'.
Proof.
rewrite binprod_comp.
rewrite (functor_comp tensor).
apply idpath.
Defined.
Definition is_iso_tensor_iso {X Y X' Y' : C} {f : X --> Y} {g : X' --> Y'}
(f_is_iso : is_iso f) (g_is_iso : is_iso g) : is_iso (f #⊗ g).
Proof.
exact (functor_on_is_iso_is_iso (is_iso_binprod_iso f_is_iso g_is_iso)).
Defined.
Definition I_pretensor : C ⟶ C := functor_fix_fst_arg _ _ _ tensor I.
Lemma I_pretensor_ok: functor_on_objects I_pretensor = λ c, I ⊗ c.
Proof.
apply idpath.
Qed.
Definition left_unitor : UU :=
nat_iso I_pretensor (functor_identity C).
Definition I_posttensor : C ⟶ C := functor_fix_snd_arg _ _ _ tensor I.
Lemma I_posttensor_ok: functor_on_objects I_posttensor = λ c, c ⊗ I.
Proof.
apply idpath.
Qed.
Definition right_unitor : UU :=
nat_iso I_posttensor (functor_identity C).
Definition assoc_left : (C ⊠ C) ⊠ C ⟶ C :=
functor_composite (pair_functor tensor (functor_identity _)) tensor.
Lemma assoc_left_ok: functor_on_objects assoc_left =
λ c, (ob1 (ob1 c) ⊗ ob2 (ob1 c)) ⊗ ob2 c.
Proof.
apply idpath.
Qed.
Definition assoc_right : (C ⊠ C) ⊠ C ⟶ C :=
functor_composite
(precategory_binproduct_unassoc _ _ _)
(functor_composite (pair_functor (functor_identity _) tensor) tensor).
Lemma assoc_right_ok: functor_on_objects assoc_right =
λ c, ob1 (ob1 c) ⊗ (ob2 (ob1 c) ⊗ ob2 c).
Proof.
apply idpath.
Qed.
Definition associator : UU :=
nat_iso assoc_left assoc_right.
Definition triangle_eq (λ' : left_unitor) (ρ' : right_unitor) (α' : associator) : UU :=
∏ (a b : C), pr1 ρ' a #⊗ id b = pr1 α' ((a, I), b) · id a #⊗ pr1 λ' b.
Definition pentagon_eq (α' : associator) : UU :=
∏ (a b c d : C), pr1 α' ((a ⊗ b, c), d) · pr1 α' ((a, b), c ⊗ d) =
pr1 α' ((a, b), c) #⊗ id d · pr1 α' ((a, b ⊗ c), d) · id a #⊗ pr1 α' ((b, c), d).
Definition is_strict (eq_λ : I_pretensor = functor_identity C) (λ' : left_unitor)
(eq_ρ : I_posttensor = functor_identity C) (ρ' : right_unitor)
(eq_α : assoc_left = assoc_right) (α' : associator) : UU :=
(is_nat_iso_id eq_λ λ') × (is_nat_iso_id eq_ρ ρ') × (is_nat_iso_id eq_α α').
End Monoidal_Precat.
Definition monoidal_precat : UU :=
∑ C : precategory, ∑ tensor : C ⊠ C ⟶ C, ∑ I : C,
∑ λ' : left_unitor tensor I,
∑ ρ' : right_unitor tensor I,
∑ α' : associator tensor,
(triangle_eq tensor I λ' ρ' α') × (pentagon_eq tensor α').
Definition monoidal_precat_struct : UU :=
∑ C : precategory, ∑ tensor : C ⊠ C ⟶ C, ∑ I : C,
∑ λ' : left_unitor tensor I,
∑ ρ' : right_unitor tensor I,
∑ α' : associator tensor, unit.
Definition mk_monoidal_precat_struct (C: precategory)(tensor: C ⊠ C ⟶ C)(I: C)
(λ': left_unitor tensor I)(ρ': right_unitor tensor I)(α': associator tensor): monoidal_precat_struct :=
(C,, (tensor,, (I,, (λ',, (ρ',, (α',, tt)))))).
Definition mk_monoidal_precat (C: precategory)(tensor: C ⊠ C ⟶ C)(I: C)
(λ': left_unitor tensor I)(ρ': right_unitor tensor I)(α': associator tensor)
(eq1: triangle_eq tensor I λ' ρ' α')(eq2: pentagon_eq tensor α'): monoidal_precat :=
(C,, (tensor,, (I,, (λ',, (ρ',, (α',, (eq1,, eq2))))))).
Section Monoidal_Precat_Accessors.
Context (M : monoidal_precat).
Definition monoidal_precat_precat := pr1 M.
Definition monoidal_precat_tensor := pr1 (pr2 M).
Definition monoidal_precat_unit := pr1 (pr2 (pr2 M)).
Definition monoidal_precat_left_unitor := pr1 (pr2 (pr2 (pr2 M))).
Definition monoidal_precat_right_unitor := pr1 (pr2 (pr2 (pr2 (pr2 M)))).
Definition monoidal_precat_associator := pr1 (pr2 (pr2 (pr2 (pr2 (pr2 M))))).
Definition monoidal_precat_eq := pr2 (pr2 (pr2 (pr2 (pr2 (pr2 M))))).
End Monoidal_Precat_Accessors.
Definition strict_monoidal_precat : UU :=
∑ M : monoidal_precat,
∏ (eq_λ : I_pretensor (monoidal_precat_tensor M) (monoidal_precat_unit M) =
functor_identity (pr1 M)),
∏ (eq_ρ : I_posttensor (monoidal_precat_tensor M) (monoidal_precat_unit M) =
functor_identity (pr1 M)),
∏ (eq_α : assoc_left (monoidal_precat_tensor M) =
assoc_right (monoidal_precat_tensor M)),
is_strict (monoidal_precat_tensor M) (monoidal_precat_unit M) eq_λ (monoidal_precat_left_unitor M) eq_ρ (monoidal_precat_right_unitor M) eq_α (monoidal_precat_associator M).
Section swapped_tensor.
Context (M : monoidal_precat).
Let C := monoidal_precat_precat M.
Let tensor := monoidal_precat_tensor M.
Definition swapping_of_tensor: C ⊠ C ⟶ C := functor_composite binswap_pair_functor tensor.
Definition associator_swapping_of_tensor: associator swapping_of_tensor.
Proof.
set (α := monoidal_precat_associator M).
set (α' := nat_iso_to_trans_inv α).
red.
set (trafo := (pre_whisker reverse_three_args α'): (assoc_left swapping_of_tensor) ⟹ (assoc_right swapping_of_tensor)).
assert (tisiso: is_nat_iso trafo).
{ red. intro c. set (aux := pr2 (nat_iso_inv α)).
apply (pre_whisker_iso_is_iso reverse_three_args α' aux).
}
exact (trafo,, tisiso).
Defined.
Lemma triangle_eq_swapping_of_tensor: triangle_eq swapping_of_tensor (monoidal_precat_unit M)
(monoidal_precat_right_unitor M) (monoidal_precat_left_unitor M) associator_swapping_of_tensor.
Proof.
red. intros a b. cbn.
set (H := pr1 (monoidal_precat_eq M)).
unfold triangle_eq in H.
eapply pathscomp0.
2: { apply cancel_precomposition.
apply pathsinv0.
apply H. }
clear H.
rewrite assoc.
eapply pathscomp0.
{ apply pathsinv0.
apply id_left. }
apply cancel_postcomposition.
apply pathsinv0.
apply iso_after_iso_inv.
Qed.
Lemma pentagon_eq_swapping_of_tensor: pentagon_eq swapping_of_tensor associator_swapping_of_tensor.
Proof.
red. intros a b c d. cbn.
set (H := pr2 (monoidal_precat_eq M)).
unfold pentagon_eq in H.
apply iso_inv_on_right.
apply pathsinv0.
apply inv_iso_unique'.
unfold precomp_with.
rewrite assoc.
eapply pathscomp0.
{ apply cancel_postcomposition.
apply H. }
clear H.
repeat rewrite assoc.
eapply pathscomp0.
{ do 2 apply cancel_postcomposition.
rewrite <- assoc.
apply cancel_precomposition.
apply pathsinv0.
apply (functor_comp (functor_fix_fst_arg _ _ _ tensor d)).
}
eapply pathscomp0.
{ do 2 apply cancel_postcomposition.
apply cancel_precomposition.
apply maponpaths.
apply (iso_inv_after_iso (make_iso _ (pr2 (monoidal_precat_associator M) ((c, b), a)))). }
rewrite functor_id.
rewrite id_right.
eapply pathscomp0.
{ apply cancel_postcomposition.
rewrite <- assoc.
apply cancel_precomposition.
apply (iso_inv_after_iso (make_iso _ (pr2 (monoidal_precat_associator M) ((d, tensor (c, b)), a)))). }
rewrite id_right.
eapply pathscomp0.
apply pathsinv0.
apply (functor_comp (functor_fix_snd_arg _ _ _ tensor a)).
eapply pathscomp0.
{ apply maponpaths.
apply (iso_inv_after_iso (make_iso _ (pr2 (monoidal_precat_associator M) ((d, c), b)))). }
use functor_id.
Qed.
Definition swapping_of_monoidal_precat: monoidal_precat.
Proof.
use (mk_monoidal_precat C swapping_of_tensor).
- exact (monoidal_precat_unit M).
- apply monoidal_precat_right_unitor.
- apply monoidal_precat_left_unitor.
- exact associator_swapping_of_tensor.
- exact triangle_eq_swapping_of_tensor.
- exact pentagon_eq_swapping_of_tensor.
Defined.
End swapped_tensor.