Library UniMath.CategoryTheory.Monoidal.CategoriesOfMonoids

Categories of monoids for monoidal categories

Require Import UniMath.Foundations.PartD.
Require Import UniMath.CategoryTheory.Core.Categories.
Require Import UniMath.CategoryTheory.Core.Functors.
Require Import UniMath.CategoryTheory.Core.NaturalTransformations.
Require Import UniMath.CategoryTheory.PrecategoryBinProduct.
Require Import UniMath.CategoryTheory.Monoidal.MonoidalCategories.

Local Open Scope cat.

Section Precategory_of_Monoids.

Context (Mon : monoidal_precat).

Let C := monoidal_precat_precat Mon.
Let tensor := monoidal_precat_tensor Mon.
Notation "X ⊗ Y" := (tensor (X , Y)).
Notation "f #⊗ g" := (# tensor (f #, g)) (at level 31).
Let I := monoidal_precat_unit Mon.
Let α' := monoidal_precat_associator Mon.
Let λ' := monoidal_precat_left_unitor Mon.
Let ρ' := monoidal_precat_right_unitor Mon.

Definition monoid_ob_data : UU :=
   X : C, (X X --> X) × (I --> X).

Definition is_monoid_ob (X : C) (μ : X X --> X) (η : I --> X) : UU :=
        (μ #⊗ id X · μ = pr1 α' ((X, X), X) · id X #⊗ μ · μ) ×
        (pr1 λ' X = η #⊗ id X · μ) × (pr1 ρ' X = id X #⊗ η · μ).
Definition monoid_ob : UU :=
         X : monoid_ob_data, is_monoid_ob (pr1 X) (pr1 (pr2 X)) (pr2 (pr2 X)).

Definition monoid_carrier (X : monoid_ob) : C := pr1 (pr1 X).
Local Coercion monoid_carrier : monoid_ob >-> ob.

Definition monoid_mult (X : monoid_ob) := pr1 (pr2 (pr1 X)).

Definition monoid_unit (X : monoid_ob) := pr2 (pr2 (pr1 X)).

Definition is_monoid_mor (X Y : monoid_ob) (f : monoid_carrier X --> monoid_carrier Y) : UU :=
  ((@monoid_mult X) · f = f #⊗ f · (@monoid_mult Y)) ×
   (@monoid_unit X) · f = (@monoid_unit Y).

Definition monoid_mor (X Y : monoid_ob) : UU :=
   f : X --> Y, is_monoid_mor X Y f.
Coercion mor_from_monoid_mor (X Y : monoid_ob) (f : monoid_mor X Y) : X --> Y := pr1 f.

Definition isaprop_is_monoid_mor (hs : has_homsets C) (X Y : monoid_ob) (f : monoid_carrier X --> monoid_carrier Y):
  isaprop (is_monoid_mor X Y f).
Proof.
  use isapropdirprod; apply hs.
Qed.

Definition isaset_monoid_mor (hs : has_homsets C) (X Y : monoid_ob) : isaset (monoid_mor X Y).
Proof.
  apply (isofhleveltotal2 2).
  - apply hs.
  - intro.
    apply isasetaprop.
    apply isaprop_is_monoid_mor; assumption.
Qed.

Definition monoid_mor_eq (hs : has_homsets C) {X Y : monoid_ob} {f g : monoid_mor X Y} :
  (f : X --> Y) = g f = g.
Proof.
  apply invweq.
  apply subtypeInjectivity.
  intro.
  apply isaprop_is_monoid_mor; assumption.
Defined.

Definition monoid_mor_id (X : monoid_ob) : monoid_mor X X.
Proof.
   (id _).
  red.
  rewrite id_right.
  rewrite tensor_id.
  rewrite id_left.
  rewrite id_right.
  split; apply idpath.
Defined.

Definition monoid_mor_comp (X Y Z : monoid_ob) (f : monoid_mor X Y) (g : monoid_mor Y Z) : monoid_mor X Z.
Proof.
  use tpair; [| split].
  - exact (f · g).
  - rewrite assoc.
    change (monoid_mult X · pr1 f · g = # tensor (f · g #, f · g) · monoid_mult Z).
    rewrite (pr1 (pr2 f)).
    rewrite <- assoc.
    change ((# tensor (f #, f) · (monoid_mult Y · g) =
             # tensor (precatbinprodmor (f · g) (f · g)) · monoid_mult Z)).
    rewrite binprod_comp.
    change ((# tensor (pr1 f #, pr1 f) · (monoid_mult Y · pr1 g) =
             # tensor ((f #, f) · (g #, g)) · monoid_mult Z)).
    rewrite functor_comp.
    rewrite (pr1 (pr2 g)).
    rewrite assoc.
    apply idpath.
  - rewrite assoc.
    rewrite <- (pr2 (pr2 g)).
    rewrite <- (pr2 (pr2 f)).
    apply idpath.
Defined.

Definition precategory_monoid_ob_mor : precategory_ob_mor.
Proof.
   monoid_ob.
  exact monoid_mor.
Defined.

Definition precategory_monoid_data : precategory_data.
Proof.
   precategory_monoid_ob_mor.
   monoid_mor_id.
  exact monoid_mor_comp.
Defined.

Lemma is_precategory_precategory_monoid_data (hs : has_homsets C)
  : is_precategory precategory_monoid_data.
Proof.
  repeat split; intros; simpl.
  - apply monoid_mor_eq.
    + apply hs.
    + apply id_left.
  - apply monoid_mor_eq.
    + apply hs.
    + apply id_right.
  - apply monoid_mor_eq.
    + apply hs.
    + apply assoc.
  - apply monoid_mor_eq.
    + apply hs.
    + apply assoc'.
Defined.

Definition precategory_monoid (hs : has_homsets C)
  : precategory := tpair _ _ (is_precategory_precategory_monoid_data hs).

Local Notation monoid := precategory_monoid.

Lemma precategory_monoid_has_homsets (hs: has_homsets C):
  has_homsets (precategory_monoid hs).
Proof.
  red.
  intros X Y.
  red.
  intros f g.
  apply (isofhlevelweqf 1 (monoid_mor_eq hs (f := f) (g := g))).
  apply hs.
Qed.

Definition category_monoid (hs: has_homsets C): category.
Proof.
   (precategory_monoid hs).
  apply precategory_monoid_has_homsets.
Defined.

End Precategory_of_Monoids.