Library UniMath.CategoryTheory.Monads.MonadAlgebras
***************************************************************
Contents :
- Definition of the category of algebras of a monad
- The free-forgetful adjunction between a category C and the
category of algebras of a monad on C
- For monads S, T on C: lifting of T to a monad on the category of S-algebras
Require Import UniMath.Foundations.PartD.
Require Import UniMath.CategoryTheory.Core.Categories.
Require Import UniMath.CategoryTheory.Core.Functors.
Require Import UniMath.CategoryTheory.Core.NaturalTransformations.
Require Import UniMath.CategoryTheory.whiskering.
Require Import UniMath.CategoryTheory.Adjunctions.Core.
Require Import UniMath.CategoryTheory.Monads.Monads.
Require Import UniMath.CategoryTheory.Monads.Derivative.
Local Open Scope cat.
Ltac rewrite_cbn x := let H := fresh in (set (H := x); cbn in H; rewrite H; clear H).
Ltac rewrite_cbn_inv x := let H := fresh in (set (H := x); cbn in H; rewrite <- H; clear H).
Section Algebras.
Context {C : precategory} (T : Monad C).
Definition of an algebra of a monad T
Section Algebra_def.
Definition Algebra_data : UU := ∑ X : C, T X --> X.
Coercion Alg_carrier (X : Algebra_data) : C := pr1 X.
Definition Alg_map (X : Algebra_data) : T X --> X := pr2 X.
Definition Algebra_laws (X : Algebra_data) : UU
:= (η T X · Alg_map X = identity X)
× (μ T X · Alg_map X = #T (Alg_map X) · Alg_map X).
Definition Algebra : UU := ∑ X : Algebra_data, Algebra_laws X.
Coercion Algebra_data_from_Algebra (X : Algebra) : Algebra_data := pr1 X.
Definition Algebra_idlaw (X : Algebra) : η T X · Alg_map X = identity X
:= pr1 (pr2 X).
Definition Algebra_multlaw (X : Algebra) : μ T X · Alg_map X = #T (Alg_map X) · Alg_map X
:= pr2 (pr2 X).
Definition free_Algebra (X : C) : Algebra.
Proof.
use tpair.
- ∃ (T X).
exact (μ T X).
- abstract (split;
[apply Monad_law1 |
apply pathsinv0;
apply Monad_law3]).
Defined.
End Algebra_def.
Data for the category of algebras of the monad T, following FunctorAlgebras.v
Section Algebra_precategory_data.
Definition is_Algebra_mor {X Y : Algebra} (f : X --> Y) : UU
:= Alg_map X · f = #T f · Alg_map Y.
Definition Algebra_mor (X Y : Algebra) : UU
:= ∑ f : X --> Y, is_Algebra_mor f.
Coercion mor_from_Algebra_mor {X Y : Algebra} (f : Algebra_mor X Y)
: X --> Y := pr1 f.
Definition Algebra_mor_commutes {X Y : Algebra} (f : Algebra_mor X Y)
: Alg_map X · f = #T f · Alg_map Y := pr2 f.
Definition Algebra_mor_id (X : Algebra) : Algebra_mor X X.
Proof.
∃ (identity X).
abstract (unfold is_Algebra_mor;
rewrite functor_id, id_right, id_left;
apply idpath).
Defined.
Definition Algebra_mor_comp (X Y Z : Algebra) (f : Algebra_mor X Y) (g : Algebra_mor Y Z)
: Algebra_mor X Z.
Proof.
∃ (f · g).
abstract (unfold is_Algebra_mor;
rewrite assoc;
rewrite Algebra_mor_commutes;
rewrite <- assoc;
rewrite Algebra_mor_commutes;
rewrite functor_comp, assoc;
apply idpath).
Defined.
Definition precategory_Alg_ob_mor : precategory_ob_mor
:= (Algebra,, Algebra_mor).
Definition precategory_Alg_data : precategory_data
:= (precategory_Alg_ob_mor,, Algebra_mor_id,, Algebra_mor_comp).
End Algebra_precategory_data.
End Algebras.
Definition of the category MonadAlg of algebras for T. Requires that C is a category.
Section Algebra_category.
Context {C : category} (T : Monad C).
Definition Algebra_mor_eq {X Y : Algebra T} {f g : Algebra_mor T X Y}
: (f : X --> Y) = g ≃ f = g.
Proof.
apply invweq.
apply subtypeInjectivity.
intro h.
apply homset_property.
Defined.
Lemma is_precategory_precategory_Alg_data : is_precategory (precategory_Alg_data T).
Proof.
apply make_is_precategory; intros;
apply Algebra_mor_eq.
- apply id_left.
- apply id_right.
- apply assoc.
- apply assoc'.
Qed.
Definition MonadAlg : precategory := ( _,, is_precategory_precategory_Alg_data).
Lemma has_homsets_MonadAlg : has_homsets MonadAlg.
Proof.
intros X Y.
apply (isofhleveltotal2 2).
- apply homset_property.
- intro f.
apply isasetaprop.
apply homset_property.
Qed.
End Algebra_category.
Adjunction between MonadAlg T and C, with right adjoint the forgetful functor
and left adjoint the free algebra functor.
Section Algebra_adjunction.
Context {C : category} (T : Monad C).
Definition forget_Alg_data : functor_data (MonadAlg T) C.
Proof.
∃ (fun X ⇒ (X : Algebra T)).
intros X Y f.
apply f.
Defined.
Definition forget_Alg : functor (MonadAlg T) C.
Proof.
∃ forget_Alg_data.
abstract (split; red; intros; apply idpath).
Defined.
Definition free_Alg_data : functor_data C (MonadAlg T).
Proof.
∃ (free_Algebra T).
intros X Y f.
∃ (#T f).
apply pathsinv0.
apply (nat_trans_ax (μ T)).
Defined.
Definition free_Alg : functor C (MonadAlg T).
Proof.
∃ free_Alg_data.
abstract (split; red; intros;
apply subtypePairEquality';
[ apply functor_id |
apply homset_property |
apply functor_comp |
apply homset_property]).
Defined.
Definition free_forgetful_are_adjoints : are_adjoints free_Alg forget_Alg.
Proof.
use make_are_adjoints.
- apply (make_nat_trans _ _ (η T)).
intros X Y f.
apply η.
- use make_nat_trans.
+ intro X.
exact (Alg_map T (X : Algebra T),, Algebra_multlaw T X).
+ intros X Y f.
apply Algebra_mor_eq; cbn.
apply pathsinv0.
apply f.
- abstract (split; intro X;
[apply Algebra_mor_eq; cbn;
apply Monad_law2 |
apply Algebra_idlaw]).
Defined.
Definition forget_free_is_T : free_Alg ∙ forget_Alg = T.
Proof.
apply functor_eq.
- apply homset_property.
- apply idpath.
Defined.
Definition Alg_adjunction_monad_eq : Monad_from_adjunction free_forgetful_are_adjoints = T.
Proof.
apply Monad_eq_raw_data.
- apply homset_property.
- apply idpath.
Defined.
End Algebra_adjunction.
Section Liftings.
Context {C : category} (S T : Monad C).
A lifting of (T, η, μ) is a monad (T', η', μ') on (MonadAlg S) which commutes with the
forgetful functor:
T' (MonadAlg S) ----------> (MonadAlg S) | | | forget_Alg | forget_Alg | | V V C ---------------------> C Tand forget_Alg ∙ η = η' ∙ forget_Alg, forget_Alg ∙ μ = μ' ∙ forget_Alg.
Definition lift_eq (T' : Monad (MonadAlg S)) : UU
:= functor_composite_data (forget_Alg S) T =
functor_composite_data T' (forget_Alg S).
Definition lift_η_commutes (T' : Monad (MonadAlg S)) (e : lift_eq T') : UU
:= transportf _ e (pre_whisker (forget_Alg S) (η T)) =
(post_whisker (η T') (forget_Alg S)).
Definition eq2 (T' : Monad (MonadAlg S))(e : lift_eq T')
: functor_composite_data (forget_Alg S) (functor_composite_data T T) =
functor_composite_data (functor_composite_data T' T') (forget_Alg S).
Proof.
apply (pathscomp0 (maponpaths (fun X ⇒ functor_composite_data X T) e)).
exact (maponpaths (functor_composite_data T') e).
Defined.
Definition lift_μ_commutes (T' : Monad (MonadAlg S)) (e : lift_eq T') : UU
:= transportf (fun X ⇒ X ⟹ (T' ∙ forget_Alg S)) (eq2 T' e)
(transportf _ e (pre_whisker (forget_Alg S) (μ T))) =
(post_whisker (μ T') (forget_Alg S)).
Definition lifting : UU
:= ∑ T' : Monad (MonadAlg S),
(∑ e : lift_eq T', (lift_η_commutes T' e) × (lift_μ_commutes T' e)).
A distributive law of S over T induces a lifting of T to S-Algebras
Section Lifting_from_dist_law.
Context {a : T ∙ S ⟹ S ∙ T} (l : monad_dist_laws a).
Definition T_on_SAlg : Algebra S → Algebra S.
Proof.
intro X.
use tpair.
- ∃ (T X).
exact (a X · (# T) (Alg_map S X)).
- abstract (split; cbn;
[ rewrite assoc;
rewrite <- functor_id;
rewrite <- Algebra_idlaw;
rewrite functor_comp;
rewrite <- (monad_dist_law1 l);
apply idpath |
rewrite 2 assoc;
rewrite functor_comp;
rewrite assoc4;
rewrite_cbn (nat_trans_ax a _ _ (Alg_map S X));
rewrite_cbn_inv (monad_dist_law4 l X);
rewrite <- assoc4;
rewrite <- assoc;
rewrite <- functor_comp;
rewrite_cbn (Algebra_multlaw S X);
rewrite functor_comp;
apply assoc]).
Defined.
Definition lift_functor : (MonadAlg S) ⟶ (MonadAlg S).
Proof.
use make_functor.
- ∃ T_on_SAlg.
intros X Y f.
∃ ((# T) (mor_from_Algebra_mor S f)).
abstract (red; cbn;
rewrite <- assoc;
rewrite <- functor_comp;
rewrite Algebra_mor_commutes;
rewrite functor_comp;
rewrite 2 assoc;
apply cancel_postcomposition;
apply pathsinv0;
apply a).
- abstract (split; red; intros; cbn;
apply subtypePairEquality';
[ apply functor_id |
apply homset_property |
apply functor_comp |
apply homset_property]).
Defined.
Definition lift_η : functor_identity (MonadAlg S) ⟹ lift_functor.
Proof.
use make_nat_trans.
- intro X. cbn in X.
∃ (η T X).
abstract (red; cbn;
rewrite assoc;
rewrite_cbn (monad_dist_law2 l X);
apply (nat_trans_ax (η T))).
- abstract (intros X Y f;
apply subtypePath;
cbn;
[ intro; apply homset_property | apply (nat_trans_ax (η T))]).
Defined.
Definition lift_μ : lift_functor ∙ lift_functor ⟹ lift_functor.
Proof.
use make_nat_trans.
- intro X. cbn in X.
∃ (μ T X).
abstract (red; cbn;
rewrite functor_comp;
rewrite <- assoc4;
rewrite assoc;
rewrite_cbn_inv (monad_dist_law3 l X);
rewrite <- assoc;
rewrite_cbn (nat_trans_ax (μ T) _ _ (Alg_map S X));
apply assoc).
- abstract (intros X Y f;
apply subtypePath;
cbn;
[ intro; apply homset_property | apply (nat_trans_ax (μ T))]).
Defined.
Definition lift_monad : Monad (MonadAlg S).
Proof.
∃ ((lift_functor ,, lift_μ) ,, lift_η).
abstract (split;
[ split; intro X;
apply subtypePath;
[ intro; apply homset_property |
apply Monad_law1 |
intro; apply homset_property |
apply Monad_law2] |
intro X; apply subtypePath;
[ intro; apply homset_property |
apply Monad_law3 ] ]).
Defined.
Definition lifting_from_dist_law : lifting.
Proof.
∃ lift_monad.
∃ (idpath _).
split.
- apply nat_trans_eq.
+ apply homset_property.
+ intro X.
apply idpath.
- apply nat_trans_eq.
+ apply homset_property.
+ intro X.
apply idpath.
Defined.
End Lifting_from_dist_law.
TODO: Construct distributive law from lifting, show distributive laws are equivalent
to liftings.