Library UniMath.CategoryTheory.DisplayedCats.Fibrations

Definitions of various kinds of fibraitions, using displayed categories.
Fibratons, opfibrations, and isofibrations are all displayed categories with extra lifting conditions.
Classically, these lifting conditions are usually taken by default as mere existence conditions; when they are given by operations, one speaks of a cloven fibration, etc.
We make the cloven version the default, so is_fibration etc are the cloven notions, and call the mere-existence versions un-cloven.
(This conventional is provisional and and might change in future.)

Isofibrations

The easiest to define are isofibrations, since they do not depend on a definition of (co-)cartesian-ness (because all displayed isomorphisms are cartesian).

Section Isofibrations.

Given an iso φ : c' =~ c in C, and an object d in D c, there’s some object d' in D c', and an iso φbar : d' =~ d over φ.

Definition iso_cleaving {C : category} (D : disp_cat C) : UU
:=
   (c c' : C) (i : iso c' c) (d : D c),
           d' : D c', iso_disp i d' d.

Definition iso_fibration (C : category) : UU
  := D : disp_cat C, iso_cleaving D.

Definition is_uncloven_iso_cleaving {C : category} (D : disp_cat C) : UU
:=
   (c c' : C) (i : iso c' c) (d : D c),
           d' : D c', iso_disp i d' d.

Definition weak_iso_fibration (C : category) : UU
  := D : disp_cat C, is_uncloven_iso_cleaving D.

As with fibrations, there is an evident dual version. However, in the iso case, it is self-dual: having forward (i.e. cocartesian) liftings along isos is equivalent to having backward (cartesian) liftings.

Definition is_op_isofibration {C : category} (D : disp_cat C) : UU
:=
   (c c' : C) (i : iso c c') (d : D c),
           d' : D c', iso_disp i d d'.

Lemma is_isofibration_iff_is_op_isofibration
    {C : category} (D : disp_cat C)
  : iso_cleaving D is_op_isofibration D.
Proof.
Abort.

End Isofibrations.

Fibrations

Section Fibrations.

Definition is_cartesian {C : category} {D : disp_cat C}
    {c c' : C} {f : c' --> c}
    {d : D c} {d' : D c'} (ff : d' -->[f] d)
  : UU
:= c'' (g : c'' --> c') (d'' : D c'') (hh : d'' -->[g·f] d),
  ∃! (gg : d'' -->[g] d'), gg ;; ff = hh.

See also cartesian_factorisation' below, for when the map one wishes to factor is not judgementally over g;;f, but over some equal map.
Definition cartesian_factorisation {C : category} {D : disp_cat C}
    {c c' : C} {f : c' --> c}
    {d : D c} {d' : D c'} {ff : d' -->[f] d} (H : is_cartesian ff)
    {c''} (g : c'' --> c') {d'' : D c''} (hh : d'' -->[g·f] d)
  : d'' -->[g] d'
:= pr1 (pr1 (H _ g _ hh)).

Definition cartesian_factorisation_commutes
    {C : category} {D : disp_cat C}
    {c c' : C} {f : c' --> c}
    {d : D c} {d' : D c'} {ff : d' -->[f] d} (H : is_cartesian ff)
    {c''} (g : c'' --> c') {d'' : D c''} (hh : d'' -->[g·f] d)
  : cartesian_factorisation H g hh ;; ff = hh
:= pr2 (pr1 (H _ g _ hh)).

This is essentially the third access function for is_cartesian, but given in a more usable form than pr2 (H …) would be.
Definition cartesian_factorisation_unique
    {C : category} {D : disp_cat C}
    {c c' : C} {f : c' --> c}
    {d : D c} {d' : D c'} {ff : d' -->[f] d} (H : is_cartesian ff)
    {c''} {g : c'' --> c'} {d'' : D c''} (gg gg' : d'' -->[g] d')
  : (gg ;; ff = gg' ;; ff) gg = gg'.
Proof.
  revert gg gg'.
  assert (goal' : gg : d'' -->[g] d',
                    gg = cartesian_factorisation H g (gg ;; ff)).
  {
    intros gg.
    exact (maponpaths pr1
      (pr2 (H _ g _ (gg ;; ff)) (gg,,idpath _))).
  }
  intros gg gg' Hggff.
  eapply pathscomp0. apply goal'.
  eapply pathscomp0. apply maponpaths, Hggff.
  apply pathsinv0, goal'.
Qed.

Definition cartesian_factorisation' {C : category} {D : disp_cat C}
    {c c' : C} {f : c' --> c}
    {d : D c} {d' : D c'} {ff : d' -->[f] d} (H : is_cartesian ff)
    {c''} (g : c'' --> c')
    {h : c'' --> c} {d'' : D c''} (hh : d'' -->[h] d)
    (e : (g · f = h))
  : d'' -->[g] d'.
Proof.
  use (cartesian_factorisation H g).
  exact (transportb _ e hh).
Defined.

Definition cartesian_factorisation_commutes'
    {C : category} {D : disp_cat C}
    {c c' : C} {f : c' --> c}
    {d : D c} {d' : D c'} {ff : d' -->[f] d} (H : is_cartesian ff)
    {c''} (g : c'' --> c')
    {h : c'' --> c} {d'' : D c''} (hh : d'' -->[h] d)
    (e : (g · f = h))
  : (cartesian_factorisation' H g hh e) ;; ff
  = transportb _ e hh.
Proof.
  apply cartesian_factorisation_commutes.
Qed.

Definition cartesian_lift {C : category} {D : disp_cat C}
    {c} (d : D c) {c' : C} (f : c' --> c)
  : UU
:= (d' : D c') (ff : d' -->[f] d), is_cartesian ff.

Definition object_of_cartesian_lift {C : category} {D : disp_cat C}
    {c} (d : D c) {c' : C} (f : c' --> c)
    (fd : cartesian_lift d f)
  : D c'
:= pr1 fd.
Coercion object_of_cartesian_lift : cartesian_lift >-> ob_disp.

Definition mor_disp_of_cartesian_lift {C : category} {D : disp_cat C}
    {c} (d : D c) {c' : C} (f : c' --> c)
    (fd : cartesian_lift d f)
  : (fd : D c') -->[f] d
:= pr1 (pr2 fd).
Coercion mor_disp_of_cartesian_lift : cartesian_lift >-> mor_disp.

Definition cartesian_lift_is_cartesian {C : category} {D : disp_cat C}
    {c} (d : D c) {c' : C} (f : c' --> c)
    (fd : cartesian_lift d f)
  : is_cartesian fd
:= pr2 (pr2 fd).
Coercion cartesian_lift_is_cartesian : cartesian_lift >-> is_cartesian.

Definition is_cartesian_disp_functor
  {C C' : category} {F : functor C C'}
  {D : disp_cat C} {D' : disp_cat C'} (FF : disp_functor F D D') : UU
:= (c c' : C) (f : c' --> c)
      (d : D c) (d' : D c') (ff : d' -->[f] d),
   is_cartesian ff is_cartesian (#FF ff).

Lemma isaprop_is_cartesian
    {C : category} {D : disp_cat C}
    {c c' : C} {f : c' --> c}
    {d : D c} {d' : D c'} (ff : d' -->[f] d)
  : isaprop (is_cartesian ff).
Proof.
  repeat (apply impred_isaprop; intro).
  apply isapropiscontr.
Defined.

Definition cleaving {C : category} (D : disp_cat C) : UU
:=
   (c c' : C) (f : c' --> c) (d : D c), cartesian_lift d f.

(Cloven) fibration


Definition fibration (C : category) : UU
:=
   D : disp_cat C, cleaving D.

Weak fibration



Definition is_cleaving {C : category} (D : disp_cat C) : UU
:=
   (c c' : C) (f : c' --> c) (d : D c), cartesian_lift d f .

Definition weak_fibration (C : category) : UU
:= D : disp_cat C, is_cleaving D.

Connection with isofibrations


Lemma is_iso_from_is_cartesian {C : category} {D : disp_cat C}
    {c c' : C} (i : iso c' c) {d : D c} {d'} (ff : d' -->[i] d)
  : is_cartesian ff is_iso_disp i ff.
Proof.
  intros Hff.
  use (_,,_); try split.
  - use
      (cartesian_factorisation' Hff (inv_from_iso i) (id_disp _)).
    apply iso_after_iso_inv.
  - apply cartesian_factorisation_commutes'.
  - apply (cartesian_factorisation_unique Hff).
    etrans. apply assoc_disp_var.
    rewrite cartesian_factorisation_commutes'.
    etrans. eapply transportf_bind.
      etrans. apply mor_disp_transportf_prewhisker.
      eapply transportf_bind, id_right_disp.
    apply pathsinv0.
    etrans. apply mor_disp_transportf_postwhisker.
    etrans. eapply transportf_bind, id_left_disp.
    apply maponpaths_2, homset_property.
Qed.

Lemma is_isofibration_from_is_fibration {C : category} {D : disp_cat C}
  : cleaving D iso_cleaving D.
Proof.
  intros D_fib c c' f d.
  assert (fd := D_fib _ _ f d).
   (fd : D _).
   (fd : _ -->[_] _).
  apply is_iso_from_is_cartesian; exact fd.
Defined.

Uniqueness of cartesian lifts


Definition cartesian_lifts_iso {C : category} {D : disp_cat C}
    {c} {d : D c} {c' : C} {f : c' --> c} (fd fd' : cartesian_lift d f)
  : iso_disp (identity_iso c') fd fd'.
Proof.
  use (_,,(_,,_)).
  - exact (cartesian_factorisation' fd' (identity _) fd (id_left _)).
  - exact (cartesian_factorisation' fd (identity _) fd' (id_left _)).
  - cbn; split.
    + apply (cartesian_factorisation_unique fd').
      etrans. apply assoc_disp_var.
      rewrite cartesian_factorisation_commutes'.
      etrans. eapply transportf_bind, mor_disp_transportf_prewhisker.
      rewrite cartesian_factorisation_commutes'.
      etrans. apply transport_f_f.
      apply pathsinv0.
      etrans. apply mor_disp_transportf_postwhisker.
      rewrite id_left_disp.
      etrans. apply transport_f_f.
      apply maponpaths_2, homset_property.
    + apply (cartesian_factorisation_unique fd).
      etrans. apply assoc_disp_var.
      rewrite cartesian_factorisation_commutes'.
      etrans. eapply transportf_bind, mor_disp_transportf_prewhisker.
      rewrite cartesian_factorisation_commutes'.
      etrans. apply transport_f_f.
      apply pathsinv0.
      etrans. apply mor_disp_transportf_postwhisker.
      rewrite id_left_disp.
      etrans. apply transport_f_f.
      apply maponpaths_2, homset_property.
Defined.

Definition cartesian_lifts_iso_commutes {C : category} {D : disp_cat C}
    {c} {d : D c} {c' : C} {f : c' --> c} (fd fd' : cartesian_lift d f)
  : (cartesian_lifts_iso fd fd') ;; fd'
  = transportb _ (id_left _) (fd : _ -->[_] _).
Proof.
  cbn. apply cartesian_factorisation_commutes'.
Qed.

In a displayed category (i.e. univalent), cartesian lifts are literally unique, if they exist; that is, the type of cartesian lifts is always a proposition.
Definition isaprop_cartesian_lifts
    {C : category} {D : disp_cat C} (D_cat : is_univalent_disp D)
    {c} (d : D c) {c' : C} (f : c' --> c)
  : isaprop (cartesian_lift d f).
Proof.
  apply invproofirrelevance; intros fd fd'.
  use total2_paths_f.
  { apply (isotoid_disp D_cat (idpath _)); cbn.
    apply cartesian_lifts_iso. }
  apply subtypePath.
  { intros ff. repeat (apply impred; intro).
    apply isapropiscontr. }
  etrans.
  { exact (! transport_map (λ x:D c', pr1) _ _). }
  cbn. etrans. apply transportf_precompose_disp.
  rewrite idtoiso_isotoid_disp.
  use (pathscomp0 (maponpaths _ _) (transportfbinv _ _ _)).
  apply (precomp_with_iso_disp_is_inj (cartesian_lifts_iso fd fd')).
  etrans. apply assoc_disp.
  etrans. eapply transportf_bind, cancel_postcomposition_disp.
    use inv_mor_after_iso_disp.
  etrans. eapply transportf_bind, id_left_disp.
  apply pathsinv0.
  etrans. apply mor_disp_transportf_prewhisker.
  etrans. eapply transportf_bind, cartesian_lifts_iso_commutes.
  apply maponpaths_2, homset_property.
Defined.

Definition univalent_fibration_is_cloven
    {C : category} {D : disp_cat C} (D_cat : is_univalent_disp D)
  : is_cleaving D cleaving D.
Proof.
  intros D_fib c c' f d.
  apply (squash_to_prop (D_fib c c' f d)).
  apply isaprop_cartesian_lifts; assumption.
  auto.
Defined.

End Fibrations.

Section Discrete_Fibrations.

Definition is_discrete_fibration {C : category} (D : disp_cat C) : UU
:=
  ( (c c' : C) (f : c' --> c) (d : D c),
          ∃! d' : D c', d' -->[f] d)
  ×
  ( c, isaset (D c)).

Definition discrete_fibration C : UU
  := D : disp_cat C, is_discrete_fibration D.

Coercion disp_cat_from_discrete_fibration C (D : discrete_fibration C)
  : disp_cat C := pr1 D.
Definition unique_lift {C} {D : discrete_fibration C} {c c'}
           (f : c' --> c) (d : D c)
  : ∃! d' : D c', d' -->[f] d
  := pr1 (pr2 D) c c' f d.
Definition isaset_fiber_discrete_fibration {C} (D : discrete_fibration C)
           (c : C) : isaset (D c) := pr2 (pr2 D) c.

TODO: move upstream
Lemma pair_inj {A : UU} {B : A UU} (is : isaset A) {a : A}
   {b b' : B a} : (a,,b) = (a,,b') b = b'.
Proof.
  intro H.
  use (invmaponpathsincl _ _ _ _ H).
  apply isofhlevelffib. intro. apply is.
Defined.

Lemma disp_mor_unique_disc_fib C (D : discrete_fibration C)
  : (c c' : C) (f : c --> c') (d : D c) (d' : D c')
      (ff ff' : d -->[f] d'), ff = ff'.
Proof.
  intros.
  assert (XR := unique_lift f d').
  assert (foo : ((d,,ff) : d0, d0 -->[f] d') = (d,,ff')).
  { apply proofirrelevance.
    apply isapropifcontr. apply XR.
  }
  apply (pair_inj (isaset_fiber_discrete_fibration _ _ ) foo).
Defined.

Lemma isaprop_disc_fib_hom C (D : discrete_fibration C)
  : (c c' : C) (f : c --> c') (d : D c) (d' : D c'),
    isaprop (d -->[f] d').
Proof.
  intros.
  apply invproofirrelevance.
  intros x x'. apply disp_mor_unique_disc_fib.
Qed.

Definition fibration_from_discrete_fibration C (D : discrete_fibration C)
  : cleaving D.
Proof.
  intros c c' f d.
  use tpair.
  - exact (pr1 (iscontrpr1 (unique_lift f d))).
  - use tpair.
    + exact (pr2 (iscontrpr1 (unique_lift f d))).
    + intros c'' g db hh.
      set (ff := pr2 (iscontrpr1 (unique_lift f d)) ). cbn in ff.
      set (d' := pr1 (iscontrpr1 (unique_lift f d))) in ×.
      set (ggff := pr2 (iscontrpr1 (unique_lift (g·f) d)) ). cbn in ggff.
      set (d'' := pr1 (iscontrpr1 (unique_lift (g·f) d))) in ×.
      set (gg := pr2 (iscontrpr1 (unique_lift g d'))). cbn in gg.
      set (d3 := pr1 (iscontrpr1 (unique_lift g d'))) in ×.
      assert (XR : ((d'',, ggff) : r, r -->[g·f] d) = (db,,hh)).
      { apply proofirrelevance. apply isapropifcontr. apply (pr2 D). }
      assert (XR1 : ((d'',, ggff) : r, r -->[g·f] d) = (d3 ,,gg;;ff)).
      { apply proofirrelevance. apply isapropifcontr. apply (pr2 D). }
      assert (XT := maponpaths pr1 XR). cbn in XT.
      assert (XT1 := maponpaths pr1 XR1). cbn in XT1.
      generalize XR.
      generalize XR1; clear XR1.
      destruct XT.
      generalize gg; clear gg.
      destruct XT1.
      intros gg XR1 XR0.
      apply iscontraprop1.
      × apply invproofirrelevance.
        intros x x'. apply subtypePath.
        { intro. apply homsets_disp. }
        apply disp_mor_unique_disc_fib.
      × gg.
        cbn.
        assert (XX := pair_inj (isaset_fiber_discrete_fibration _ _ ) XR1).
        assert (YY := pair_inj (isaset_fiber_discrete_fibration _ _ ) XR0).
        etrans. apply (!XX). apply YY.
Defined.

Section Equivalence_disc_fibs_presheaves.


Variable C : category.

Definition precat_of_discrete_fibs_ob_mor : precategory_ob_mor.
Proof.
   (discrete_fibration C).
  intros a b. exact (disp_functor (functor_identity _ ) a b).
Defined.

Definition precat_of_discrete_fibs_data : precategory_data.
Proof.
   precat_of_discrete_fibs_ob_mor.
  split.
  - intro.
    exact (@disp_functor_identity _ _ ).
  - intros ? ? ? f g. exact (disp_functor_composite f g ).
Defined.

Lemma eq_discrete_fib_mor (F G : precat_of_discrete_fibs_ob_mor)
      (a b : F --> G)
      (H : x y, pr1 (pr1 a) x y = pr1 (pr1 b) x y)
  : a = b.
Proof.
  apply subtypePath.
  { intro. apply isaprop_disp_functor_axioms. }
  use total2_paths_f.
  - apply funextsec. intro x.
    apply funextsec. intro y.
    apply H.
  - repeat (apply funextsec; intro).
    apply disp_mor_unique_disc_fib.
Qed.

Definition precat_axioms_of_discrete_fibs : is_precategory precat_of_discrete_fibs_data.
Proof.
  repeat split; intros;
  apply eq_discrete_fib_mor; intros; apply idpath.
Qed.

Definition precat_of_discrete_fibs : precategory
  := (_ ,, precat_axioms_of_discrete_fibs).

Lemma has_homsets_precat_of_discrete_fibs : has_homsets precat_of_discrete_fibs.
Proof.
  intros f f'.
  apply (isofhleveltotal2 2).
  - apply (isofhleveltotal2 2).
    + do 2 (apply impred; intro).
      apply isaset_fiber_discrete_fibration.
    + intro. do 6 (apply impred; intro).
      apply homsets_disp.
  - intro. apply isasetaprop. apply isaprop_disp_functor_axioms.
Qed.

Definition Precat_of_discrete_fibs : category
  := ( precat_of_discrete_fibs ,, has_homsets_precat_of_discrete_fibs).

Functor from discrete fibrations to presheaves

Functor on objects



Definition preshv_data_from_disc_fib_ob (D : discrete_fibration C)
  : functor_data C^op HSET_univalent_category.
Proof.
  use tpair.
  + intro c. (D c). apply isaset_fiber_discrete_fibration.
  + intros c' c f x. cbn in ×.
    exact (pr1 (iscontrpr1 (unique_lift f x))).
Defined.

Definition preshv_ax_from_disc_fib_ob (D : discrete_fibration C)
  : is_functor (preshv_data_from_disc_fib_ob D).
Proof.
  split.
  + intro c; cbn.
    apply funextsec; intro x. simpl.
    apply pathsinv0. apply path_to_ctr.
      apply id_disp.
  + intros c c' c'' f g. cbn in ×.
    apply funextsec; intro x.
    apply pathsinv0.
    apply path_to_ctr.
    eapply comp_disp.
    × apply (pr2 (iscontrpr1 (unique_lift g _))).
    × apply (pr2 (iscontrpr1 (unique_lift f _ ))).
Qed.

Definition preshv_from_disc_fib_ob (D : discrete_fibration C)
  : PreShv C := (_ ,, preshv_ax_from_disc_fib_ob D).

Functor on morphisms


Definition foo : functor_data Precat_of_discrete_fibs (PreShv C).
Proof.
   preshv_from_disc_fib_ob.
  intros D D' a.
  use tpair.
  - intro c. simpl.
    exact (pr1 a c).
  - abstract (
        intros x y f; cbn in *;
        apply funextsec; intro d;
        apply path_to_ctr;
        apply #a;
        apply (pr2 (iscontrpr1 (unique_lift f _ )))
      ).
Defined.

Functor properties


Definition bar : is_functor foo.
Proof.
  split.
  - intro D. apply nat_trans_eq. { apply has_homsets_HSET. }
    intro c . apply idpath.
  - intros D E F a b. apply nat_trans_eq. { apply has_homsets_HSET. }
    intro c. apply idpath.
Qed.

Definition functor_Disc_Fibs_to_preShvs : functor _ _
  := ( _ ,, bar).

Functor from presheaves to discrete fibrations

Functor on objects


Definition disp_cat_from_preshv (D : PreShv C) : disp_cat C.
Proof.
  use tpair.
  - use tpair.
    + (λ c, pr1hSet (pr1 D c)).
      intros x y c d f. exact (functor_on_morphisms (pr1 D) f d = c).
    + split.
      × intros; cbn in *; apply (toforallpaths _ _ _ (functor_id D x ) _ ).
      × intros ? ? ? ? ? ? ? ? X X0; cbn in *;
        etrans; [apply (toforallpaths _ _ _ (functor_comp D g f ) _ ) |];
        cbn; etrans; [ apply maponpaths; apply X0 |];
        apply X.
  - abstract (
         repeat use tpair; cbn; intros; try apply setproperty;
         apply isasetaprop; apply setproperty
       ).
Defined.

Definition disc_fib_from_preshv (D : PreShv C) : discrete_fibration C.
Proof.
  use tpair.
  - apply (disp_cat_from_preshv D).
  - cbn.
    split.
    + intros c c' f d. simpl.
      use unique_exists.
      × apply (functor_on_morphisms (pr1 D) f d).
      × apply idpath.
      × intro. apply setproperty.
      × intros. apply pathsinv0. assumption.
    + intro. simpl. apply setproperty.
Defined.

Functor on morphisms


Definition functor_data_preShv_Disc_fibs
  : functor_data (PreShv C) Precat_of_discrete_fibs.
Proof.
  use tpair.
  - apply disc_fib_from_preshv.
  - intros F G a.
    use tpair.
    + use tpair.
      × intros c. apply (pr1 a c).
      × intros x y X Y f H;
        assert (XR := nat_trans_ax a);
        apply pathsinv0; etrans; [|apply (toforallpaths _ _ _ (XR _ _ f))];
        cbn; apply maponpaths, (!H).
    + cbn. abstract (repeat use tpair; cbn; intros; apply setproperty).
Defined.

Functor properties


Definition is_functor_functor_data_preShv_Disc_fibs
  : is_functor functor_data_preShv_Disc_fibs .
Proof.
  split; unfold functor_idax, functor_compax; intros;
  apply eq_discrete_fib_mor; intros; apply idpath.
Qed.

Definition functor_preShvs_to_Disc_Fibs : functor _ _
  := ( _ ,, is_functor_functor_data_preShv_Disc_fibs ).

Definition η_disc_fib : nat_trans (functor_identity _ )
                          (functor_preShvs_to_Disc_Fibs functor_Disc_Fibs_to_preShvs).
Proof.
  use tpair.
  - intro F.
    cbn. use tpair.
    + red. cbn. intro c; apply idfun.
    + intros c c' f. cbn in ×. apply idpath.
  - abstract (
        intros F G a;
        apply nat_trans_eq; [ apply has_homsets_HSET |];
        intro c ; apply idpath
      ).
Defined.

Definition ε_disc_fib
  : nat_trans (functor_Disc_Fibs_to_preShvs functor_preShvs_to_Disc_Fibs)
              (functor_identity _ ).
Proof.
  use tpair.
  - intro D.
    use tpair.
    + use tpair.
      × cbn. intro c; apply idfun.
      × cbn. intros c c' x y f H.
        set (XR := pr2 (iscontrpr1 (unique_lift f y))). cbn in XR.
        apply (transportf (λ t, t -->[f] y) H XR).
    + abstract (split; cbn; unfold idfun; intros; apply disp_mor_unique_disc_fib).
  - abstract (intros c c' f; apply eq_discrete_fib_mor; intros; apply idpath).
Defined.

Definition ε_inv_disc_fib
  : nat_trans (functor_identity _ )
      (functor_Disc_Fibs_to_preShvs functor_preShvs_to_Disc_Fibs).
Proof.
  use tpair.
  - intro D.
    cbn.
    use tpair.
    + use tpair.
      × cbn. intro c; apply idfun.
      × abstract (
            intros c c' x y f H; cbn;
            unfold idfun;
            apply pathsinv0; apply path_to_ctr; apply H
          ).
    + abstract (
          split;
          [ intros x y; apply isaset_fiber_discrete_fibration |];
          intros; apply isaset_fiber_discrete_fibration
        ).
  - abstract (intros c c' f; apply eq_discrete_fib_mor; intros; apply idpath).
Defined.

Definition adjunction_data_disc_fib
  : adjunction_data (PreShv C) Precat_of_discrete_fibs.
Proof.
   functor_preShvs_to_Disc_Fibs.
   functor_Disc_Fibs_to_preShvs.
   η_disc_fib.
  exact ε_disc_fib.
Defined.

Lemma forms_equivalence_disc_fib
  : forms_equivalence adjunction_data_disc_fib.
Proof.
  split.
  - intro F.
    apply functor_iso_if_pointwise_iso.
    intro c. cbn.
    set (XR := hset_equiv_is_iso _ _ (idweq (pr1 F c : hSet) )).
    apply XR.
  - intro F.
    apply is_iso_from_is_z_iso.
    use (_ ,, (_,,_ )).
    + apply ε_inv_disc_fib.
    + apply eq_discrete_fib_mor.
      intros. apply idpath.
    + apply eq_discrete_fib_mor.
      intros. apply idpath.
Qed.

Definition adj_equivalence_disc_fib : adj_equivalence_of_precats _ :=
  adjointificiation (_ ,, forms_equivalence_disc_fib).

End Equivalence_disc_fibs_presheaves.

End Discrete_Fibrations.

Section Opfibrations.


End Opfibrations.

Section isofibration_from_disp_over_univalent.

Context (C : category)
        (Ccat : is_univalent C)
        (D : disp_cat C).

Definition iso_cleaving_category : iso_cleaving D.
Proof.
  intros c c' i d.
  use tpair.
  - exact (transportb D (isotoid _ Ccat i) d).
  - generalize i. clear i.
    apply forall_isotoid.
    { apply Ccat. }
    intro e. induction e.
    cbn.
    rewrite isotoid_identity_iso.
    cbn.
    apply identity_iso_disp.
Defined.

End isofibration_from_disp_over_univalent.

Split fibrations


Definition cleaving_ob {C : category} {D : disp_cat C}
           (X : cleaving D) {c c' : C} (f : c' --> c) (d : D c)
  : D c' := X _ _ f d.

Definition cleaving_mor {C : category} {D : disp_cat C}
           (X : cleaving D) {c c' : C} (f : c' --> c) (d : D c)
  : cleaving_ob X f d -->[f] d := X _ _ f d.

Definition is_split_id {C : category} {D : disp_cat C}
           (X : cleaving D) : UU
  := c (d : D c),
       e : cleaving_ob X (identity _) d = d,
            cleaving_mor X (identity _) d =
            transportb (λ x, x -->[ _ ] _ ) e (id_disp d).

Definition is_split_comp {C : category} {D : disp_cat C}
           (X : cleaving D) : UU
  :=
     (c c' c'' : C) (f : c' --> c) (g : c'' --> c') (d : D c),
       e : cleaving_ob X (g · f) d =
                cleaving_ob X g (cleaving_ob X f d),
            cleaving_mor X (g · f) d =
            transportb (λ x, x -->[ _ ] _ ) e
                       (cleaving_mor X g (cleaving_ob X f d) ;;
                                     cleaving_mor X f d).

Definition is_split {C : category} {D : disp_cat C}
           (X : cleaving D) : UU
  := is_split_id X × is_split_comp X × ( c, isaset (D c)).

Lemma is_split_fibration_from_discrete_fibration
      {C : category} {D : disp_cat C}
      (X : is_discrete_fibration D)
: is_split (fibration_from_discrete_fibration _ (D,,X)).
Proof.
  repeat split.
  - intros c d.
    cbn.
    use tpair.
    + apply pathsinv0.
      apply path_to_ctr.
      apply id_disp.
    + cbn.
      apply (disp_mor_unique_disc_fib _ (D,,X)).
  - intros c c' c'' f g d.
    cbn.
    use tpair.
    + set (XR := unique_lift f d).
      set (d' := pr1 (iscontrpr1 XR)).
      set (f' := pr2 (iscontrpr1 XR)). cbn in f'.
      set (g' := pr2 (iscontrpr1 (unique_lift g d'))).
      cbn in g'.
      set (gf' := g' ;; f').
      match goal with |[ |- ?a = ?b ] ⇒
                       assert (X0 : (a,,pr2 (iscontrpr1 (unique_lift (g · f) d))) =
                                    (b,,gf')) end.

      { apply proofirrelevance. apply isapropifcontr. apply X. }
      apply (maponpaths pr1 X0).
    + apply (disp_mor_unique_disc_fib _ (D,,X)).
  - apply isaset_fiber_discrete_fibration.
Defined.

Section fiber_functor_from_cleaving.

Context {C : category} (D : disp_cat C) (F : cleaving D).
Context {c c' : C} (f : Cc', c).

Let lift_f : d : D c, cartesian_lift d f := F _ _ f.

Definition fiber_functor_from_cleaving_data : functor_data (D [{c}]) (D [{c'}]).
Proof.
  use tpair.
  + intro d. exact (object_of_cartesian_lift _ _ (lift_f d)).
  + intros d' d ff. cbn.

    set (XR' := @cartesian_factorisation C D _ _ f).
    specialize (XR' _ _ _ (lift_f d)).
    use XR'.
    × use (transportf (mor_disp _ _ )
                      _
                      (mor_disp_of_cartesian_lift _ _ (lift_f d') ;; ff)).
      etrans; [ apply id_right |]; apply pathsinv0; apply id_left.
Defined.

Lemma is_functor_from_cleaving_data : is_functor fiber_functor_from_cleaving_data.
Proof.
  split.
  - intro d; cbn.
    apply pathsinv0.
    apply path_to_ctr.
    etrans; [apply id_left_disp |].
    apply pathsinv0.
    etrans. { apply maponpaths. apply id_right_disp. }
    etrans; [ apply transport_f_f |].
    unfold transportb.
    apply maponpaths_2.
    apply homset_property.
  - intros d'' d' d ff' ff; cbn.
    apply pathsinv0.
    apply path_to_ctr.
    etrans; [apply mor_disp_transportf_postwhisker |].
    apply pathsinv0.
    etrans. { apply maponpaths; apply mor_disp_transportf_prewhisker. }
    etrans; [apply transport_f_f |].
    apply transportf_comp_lemma.
    apply pathsinv0.
    etrans; [apply assoc_disp_var |].
    apply pathsinv0.
    apply transportf_comp_lemma.
    apply pathsinv0.
    etrans ; [ apply maponpaths, cartesian_factorisation_commutes |].
    etrans ; [ apply mor_disp_transportf_prewhisker |].
    apply pathsinv0.
    apply transportf_comp_lemma.
    apply pathsinv0.
    etrans; [ apply assoc_disp |].
    apply pathsinv0.
    apply transportf_comp_lemma.
    apply pathsinv0.
    etrans; [ apply maponpaths_2, cartesian_factorisation_commutes |].
    etrans; [ apply mor_disp_transportf_postwhisker |].
    etrans. { apply maponpaths. apply assoc_disp_var. }
    etrans. { apply transport_f_f. }
    apply maponpaths_2, homset_property.
Qed.

Definition fiber_functor_from_cleaving : D [{c}] D [{c'}]
  := make_functor _ is_functor_from_cleaving_data.

End fiber_functor_from_cleaving.