Library UniMath.Bicategories.DisplayedBicats.Examples.Add2Cell
Given is a displayed bicategory on C. Then we have a total category E of which the objects are objects in C with some additional structure.
In this file, we give a method for adding 2-cells to the structure, which represents an equation on the structure in the total category.
The equation has two endpoints, l and r. These are given as natural maps in the underlying bicategory.
Require Import UniMath.Foundations.All.
Require Import UniMath.MoreFoundations.All.
Require Import UniMath.CategoryTheory.Core.Categories.
Require Import UniMath.CategoryTheory.Core.Functors.
Require Import UniMath.CategoryTheory.PrecategoryBinProduct.
Require Import UniMath.Bicategories.Core.Bicat.
Import Bicat.Notations.
Require Import UniMath.Bicategories.Core.BicategoryLaws.
Require Import UniMath.Bicategories.Core.Invertible_2cells.
Require Import UniMath.Bicategories.PseudoFunctors.Display.PseudoFunctorBicat.
Require Import UniMath.Bicategories.PseudoFunctors.PseudoFunctor.
Import PseudoFunctor.Notations.
Require Import UniMath.Bicategories.Transformations.PseudoTransformation.
Require Import UniMath.CategoryTheory.DisplayedCats.Core.
Require Import UniMath.Bicategories.DisplayedBicats.DispBicat.
Import DispBicat.Notations.
Require Import UniMath.Bicategories.Core.Unitors.
Require Import UniMath.Bicategories.Core.Adjunctions.
Require Import UniMath.Bicategories.Core.Univalence.
Require Import UniMath.Bicategories.Core.Examples.OneTypes.
Require Import UniMath.Bicategories.DisplayedBicats.DispAdjunctions.
Require Import UniMath.Bicategories.DisplayedBicats.DispUnivalence.
Require Import UniMath.Bicategories.DisplayedBicats.Examples.DisplayedCatToBicat.
Require Import UniMath.Bicategories.PseudoFunctors.Examples.Identity.
Require Import UniMath.Bicategories.PseudoFunctors.Examples.Composition.
Require Import UniMath.Bicategories.PseudoFunctors.Examples.Projection.
Local Open Scope cat.
Section Add2Cell.
Context {C : bicat}.
Variable (D : disp_bicat C).
Local Notation E := (total_bicat D).
Local Notation F := (pr1_psfunctor D).
Variable (S T : psfunctor C C)
(l r : pstrans
(@comp_psfunctor E C C S F)
(@comp_psfunctor E C C T F)).
Definition add_cell_disp_cat_data : disp_cat_ob_mor E.
Proof.
use make_disp_cat_ob_mor.
- exact (λ X, l X ==> r X).
- exact (λ X Y α β f,
(α ▹ #T(#F f))
• psnaturality_of r f
=
(psnaturality_of l f)
• (#S(#F f) ◃ β)).
Defined.
Definition add_cell_disp_cat_id_comp : disp_cat_id_comp E add_cell_disp_cat_data.
Proof.
split.
- intros x xx.
pose (pstrans_id_alt l x) as p.
simpl.
cbn in p.
rewrite !psfunctor_id2 in p.
rewrite id2_left, id2_right in p.
refine (!_).
etrans.
{
apply maponpaths_2.
exact p.
}
clear p.
refine (!_).
pose (pstrans_id_alt r x) as p.
cbn in p.
rewrite !psfunctor_id2 in p.
rewrite id2_left, id2_right in p.
etrans.
{
apply maponpaths.
exact p.
}
clear p.
rewrite !vassocr.
rewrite vcomp_whisker.
rewrite !vassocl.
apply maponpaths.
rewrite !vassocr.
rewrite vcomp_runitor.
rewrite !vassocl.
apply maponpaths.
rewrite !vassocr.
rewrite linvunitor_natural.
rewrite <- lwhisker_hcomp.
rewrite !vassocl.
rewrite vcomp_whisker.
apply idpath.
- intros x y z f g xx yy zz Hf Hg ; cbn.
pose (pstrans_comp_alt l f g) as pl.
pose (pstrans_comp_alt r f g) as pr.
cbn in pl, pr ; rewrite pl, pr ; clear pl pr.
rewrite !vassocr.
rewrite vcomp_whisker.
rewrite !vassocl.
apply maponpaths.
rewrite vcomp_whisker.
rewrite !vassocr.
apply maponpaths_2.
rewrite <- rwhisker_rwhisker.
rewrite !vassocl.
apply maponpaths.
rewrite <- lwhisker_lwhisker.
rewrite !vassocr.
apply maponpaths_2.
rewrite rwhisker_vcomp.
etrans.
{
apply maponpaths_2.
apply maponpaths_2.
apply maponpaths.
apply Hf.
}
rewrite <- rwhisker_vcomp.
rewrite !vassocl.
apply maponpaths.
rewrite !vassocr.
rewrite <- rwhisker_lwhisker_rassociator.
rewrite !vassocl.
apply maponpaths.
rewrite lwhisker_vcomp.
etrans.
{
apply maponpaths.
apply Hg.
}
rewrite <- lwhisker_vcomp.
reflexivity.
Qed.
Definition add_cell_disp_cat : disp_bicat E.
Proof.
use disp_cell_unit_bicat.
use tpair.
- exact add_cell_disp_cat_data.
- exact add_cell_disp_cat_id_comp.
Defined.
Definition add_cell_disp_cat_univalent_2_1
: disp_univalent_2_1 add_cell_disp_cat.
Proof.
apply disp_cell_unit_bicat_univalent_2_1.
intros.
apply C.
Defined.
Definition add_cell_disp_cat_univalent_2_0
(HC : is_univalent_2_1 C)
(HD : disp_univalent_2_1 D)
: disp_univalent_2_0 add_cell_disp_cat.
Proof.
use disp_cell_unit_bicat_univalent_2_0.
- apply total_is_univalent_2_1.
+ exact HC.
+ exact HD.
- intros.
apply C.
- intros x xx yy.
simpl in ×.
apply C.
- abstract
(intros x xx yy;
intros p;
induction p as [p q];
cbn ; unfold idfun;
cbn in p, q;
pose (pstrans_id_alt l) as pl;
cbn in pl ; rewrite pl in p ; clear pl;
pose (pstrans_id_alt r) as pr;
cbn in pr ; rewrite pr in p ; clear pr;
cbn in p;
rewrite !psfunctor_id2 in p;
rewrite !id2_right, !id2_left in p;
rewrite !vassocr in p;
rewrite vcomp_whisker in p;
rewrite !vassocl in p;
assert (is_invertible_2cell (l x ◃ ((pr122 T) (pr1 x)) ^-1)) as H;
try is_iso ;
pose (vcomp_lcancel _ H p) as p';
rewrite !vassocr in p';
rewrite vcomp_runitor in p';
rewrite !vassocl in p';
pose (vcomp_lcancel _ (is_invertible_2cell_runitor _) p') as p'';
use (vcomp_rcancel (linvunitor (r x))) ; try is_iso;
use (vcomp_rcancel (psfunctor_id S (pr1 x) ▹ r x))
; try (is_iso ; exact (psfunctor_id S (pr1 x)));
rewrite !vassocl;
refine (p'' @ _);
rewrite vcomp_whisker;
rewrite !vassocr;
apply maponpaths_2;
rewrite lwhisker_hcomp;
exact (!(linvunitor_natural _))).
Defined.
Definition add_cell_disp_cat_univalent_2
(HC : is_univalent_2_1 C)
(HD : disp_univalent_2_1 D)
: disp_univalent_2 add_cell_disp_cat.
Proof.
apply make_disp_univalent_2.
- apply add_cell_disp_cat_univalent_2_0; assumption.
- apply add_cell_disp_cat_univalent_2_1.
Defined.
Definition disp_2cells_isaprop_add_cell
: disp_2cells_isaprop add_cell_disp_cat.
Proof.
intro; intros; exact isapropunit.
Qed.
Definition disp_locally_groupoid_add_cell
: disp_locally_groupoid add_cell_disp_cat.
Proof.
use make_disp_locally_groupoid.
- intro; intros. exact tt.
- exact disp_2cells_isaprop_add_cell.
Qed.
End Add2Cell.
Require Import UniMath.MoreFoundations.All.
Require Import UniMath.CategoryTheory.Core.Categories.
Require Import UniMath.CategoryTheory.Core.Functors.
Require Import UniMath.CategoryTheory.PrecategoryBinProduct.
Require Import UniMath.Bicategories.Core.Bicat.
Import Bicat.Notations.
Require Import UniMath.Bicategories.Core.BicategoryLaws.
Require Import UniMath.Bicategories.Core.Invertible_2cells.
Require Import UniMath.Bicategories.PseudoFunctors.Display.PseudoFunctorBicat.
Require Import UniMath.Bicategories.PseudoFunctors.PseudoFunctor.
Import PseudoFunctor.Notations.
Require Import UniMath.Bicategories.Transformations.PseudoTransformation.
Require Import UniMath.CategoryTheory.DisplayedCats.Core.
Require Import UniMath.Bicategories.DisplayedBicats.DispBicat.
Import DispBicat.Notations.
Require Import UniMath.Bicategories.Core.Unitors.
Require Import UniMath.Bicategories.Core.Adjunctions.
Require Import UniMath.Bicategories.Core.Univalence.
Require Import UniMath.Bicategories.Core.Examples.OneTypes.
Require Import UniMath.Bicategories.DisplayedBicats.DispAdjunctions.
Require Import UniMath.Bicategories.DisplayedBicats.DispUnivalence.
Require Import UniMath.Bicategories.DisplayedBicats.Examples.DisplayedCatToBicat.
Require Import UniMath.Bicategories.PseudoFunctors.Examples.Identity.
Require Import UniMath.Bicategories.PseudoFunctors.Examples.Composition.
Require Import UniMath.Bicategories.PseudoFunctors.Examples.Projection.
Local Open Scope cat.
Section Add2Cell.
Context {C : bicat}.
Variable (D : disp_bicat C).
Local Notation E := (total_bicat D).
Local Notation F := (pr1_psfunctor D).
Variable (S T : psfunctor C C)
(l r : pstrans
(@comp_psfunctor E C C S F)
(@comp_psfunctor E C C T F)).
Definition add_cell_disp_cat_data : disp_cat_ob_mor E.
Proof.
use make_disp_cat_ob_mor.
- exact (λ X, l X ==> r X).
- exact (λ X Y α β f,
(α ▹ #T(#F f))
• psnaturality_of r f
=
(psnaturality_of l f)
• (#S(#F f) ◃ β)).
Defined.
Definition add_cell_disp_cat_id_comp : disp_cat_id_comp E add_cell_disp_cat_data.
Proof.
split.
- intros x xx.
pose (pstrans_id_alt l x) as p.
simpl.
cbn in p.
rewrite !psfunctor_id2 in p.
rewrite id2_left, id2_right in p.
refine (!_).
etrans.
{
apply maponpaths_2.
exact p.
}
clear p.
refine (!_).
pose (pstrans_id_alt r x) as p.
cbn in p.
rewrite !psfunctor_id2 in p.
rewrite id2_left, id2_right in p.
etrans.
{
apply maponpaths.
exact p.
}
clear p.
rewrite !vassocr.
rewrite vcomp_whisker.
rewrite !vassocl.
apply maponpaths.
rewrite !vassocr.
rewrite vcomp_runitor.
rewrite !vassocl.
apply maponpaths.
rewrite !vassocr.
rewrite linvunitor_natural.
rewrite <- lwhisker_hcomp.
rewrite !vassocl.
rewrite vcomp_whisker.
apply idpath.
- intros x y z f g xx yy zz Hf Hg ; cbn.
pose (pstrans_comp_alt l f g) as pl.
pose (pstrans_comp_alt r f g) as pr.
cbn in pl, pr ; rewrite pl, pr ; clear pl pr.
rewrite !vassocr.
rewrite vcomp_whisker.
rewrite !vassocl.
apply maponpaths.
rewrite vcomp_whisker.
rewrite !vassocr.
apply maponpaths_2.
rewrite <- rwhisker_rwhisker.
rewrite !vassocl.
apply maponpaths.
rewrite <- lwhisker_lwhisker.
rewrite !vassocr.
apply maponpaths_2.
rewrite rwhisker_vcomp.
etrans.
{
apply maponpaths_2.
apply maponpaths_2.
apply maponpaths.
apply Hf.
}
rewrite <- rwhisker_vcomp.
rewrite !vassocl.
apply maponpaths.
rewrite !vassocr.
rewrite <- rwhisker_lwhisker_rassociator.
rewrite !vassocl.
apply maponpaths.
rewrite lwhisker_vcomp.
etrans.
{
apply maponpaths.
apply Hg.
}
rewrite <- lwhisker_vcomp.
reflexivity.
Qed.
Definition add_cell_disp_cat : disp_bicat E.
Proof.
use disp_cell_unit_bicat.
use tpair.
- exact add_cell_disp_cat_data.
- exact add_cell_disp_cat_id_comp.
Defined.
Definition add_cell_disp_cat_univalent_2_1
: disp_univalent_2_1 add_cell_disp_cat.
Proof.
apply disp_cell_unit_bicat_univalent_2_1.
intros.
apply C.
Defined.
Definition add_cell_disp_cat_univalent_2_0
(HC : is_univalent_2_1 C)
(HD : disp_univalent_2_1 D)
: disp_univalent_2_0 add_cell_disp_cat.
Proof.
use disp_cell_unit_bicat_univalent_2_0.
- apply total_is_univalent_2_1.
+ exact HC.
+ exact HD.
- intros.
apply C.
- intros x xx yy.
simpl in ×.
apply C.
- abstract
(intros x xx yy;
intros p;
induction p as [p q];
cbn ; unfold idfun;
cbn in p, q;
pose (pstrans_id_alt l) as pl;
cbn in pl ; rewrite pl in p ; clear pl;
pose (pstrans_id_alt r) as pr;
cbn in pr ; rewrite pr in p ; clear pr;
cbn in p;
rewrite !psfunctor_id2 in p;
rewrite !id2_right, !id2_left in p;
rewrite !vassocr in p;
rewrite vcomp_whisker in p;
rewrite !vassocl in p;
assert (is_invertible_2cell (l x ◃ ((pr122 T) (pr1 x)) ^-1)) as H;
try is_iso ;
pose (vcomp_lcancel _ H p) as p';
rewrite !vassocr in p';
rewrite vcomp_runitor in p';
rewrite !vassocl in p';
pose (vcomp_lcancel _ (is_invertible_2cell_runitor _) p') as p'';
use (vcomp_rcancel (linvunitor (r x))) ; try is_iso;
use (vcomp_rcancel (psfunctor_id S (pr1 x) ▹ r x))
; try (is_iso ; exact (psfunctor_id S (pr1 x)));
rewrite !vassocl;
refine (p'' @ _);
rewrite vcomp_whisker;
rewrite !vassocr;
apply maponpaths_2;
rewrite lwhisker_hcomp;
exact (!(linvunitor_natural _))).
Defined.
Definition add_cell_disp_cat_univalent_2
(HC : is_univalent_2_1 C)
(HD : disp_univalent_2_1 D)
: disp_univalent_2 add_cell_disp_cat.
Proof.
apply make_disp_univalent_2.
- apply add_cell_disp_cat_univalent_2_0; assumption.
- apply add_cell_disp_cat_univalent_2_1.
Defined.
Definition disp_2cells_isaprop_add_cell
: disp_2cells_isaprop add_cell_disp_cat.
Proof.
intro; intros; exact isapropunit.
Qed.
Definition disp_locally_groupoid_add_cell
: disp_locally_groupoid add_cell_disp_cat.
Proof.
use make_disp_locally_groupoid.
- intro; intros. exact tt.
- exact disp_2cells_isaprop_add_cell.
Qed.
End Add2Cell.