Library UniMath.Bicategories.PseudoFunctors.Examples.Identity

The identity pseudo functor on a bicategoy.
Authors: Dan Frumin, Niels van der Weide
Ported from: https://github.com/nmvdw/groupoids
Require Import UniMath.Foundations.All.
Require Import UniMath.MoreFoundations.All.
Require Import UniMath.CategoryTheory.Core.Categories.
Require Import UniMath.CategoryTheory.Core.Functors.
Require Import UniMath.CategoryTheory.PrecategoryBinProduct.
Require Import UniMath.Bicategories.Core.Bicat. Import Bicat.Notations.
Require Import UniMath.Bicategories.Core.Invertible_2cells.
Require Import UniMath.Bicategories.Core.BicategoryLaws.
Require Import UniMath.Bicategories.PseudoFunctors.Display.PseudoFunctorBicat.
Require Import UniMath.Bicategories.PseudoFunctors.PseudoFunctor.
Import PseudoFunctor.Notations.

Section IdentityFunctor.
  Variable (C : bicat).

  Definition id_functor_d : psfunctor_data C C.
  Proof.
    use make_psfunctor_data.
    - exact (λ x, x).
    - exact (λ _ _ x, x).
    - exact (λ _ _ _ _ x, x).
    - exact (λ x, id2 _).
    - exact (λ _ _ _ _ _, id2 _).
  Defined.

  Definition id_functor_laws : psfunctor_laws id_functor_d.
  Proof.
    repeat split.
    - intros a b f ; cbn in ×.
      rewrite id2_rwhisker.
      rewrite !id2_left.
      reflexivity.
    - intros a b f ; cbn in ×.
      rewrite lwhisker_id2.
      rewrite !id2_left.
      reflexivity.
    - intros a b c d f g h ; cbn in ×.
      rewrite lwhisker_id2, id2_rwhisker.
      rewrite !id2_left, !id2_right.
      reflexivity.
    - intros a b c f g h α ; cbn in ×.
      rewrite !id2_left, !id2_right.
      reflexivity.
    - intros a b c f g h α ; cbn in ×.
      rewrite !id2_left, !id2_right.
      reflexivity.
  Qed.

  Definition id_psfunctor : psfunctor C C.
  Proof.
    use make_psfunctor.
    - exact id_functor_d.
    - exact id_functor_laws.
    - split ; cbn ; intros ; is_iso.
  Defined.
End IdentityFunctor.