Library UniMath.Bicategories.PseudoFunctors.Examples.Identity
The identity pseudo functor on a bicategoy.
Authors: Dan Frumin, Niels van der Weide
Ported from: https://github.com/nmvdw/groupoids
Require Import UniMath.Foundations.All.
Require Import UniMath.MoreFoundations.All.
Require Import UniMath.CategoryTheory.Core.Categories.
Require Import UniMath.CategoryTheory.Core.Functors.
Require Import UniMath.CategoryTheory.PrecategoryBinProduct.
Require Import UniMath.Bicategories.Core.Bicat. Import Bicat.Notations.
Require Import UniMath.Bicategories.Core.Invertible_2cells.
Require Import UniMath.Bicategories.Core.BicategoryLaws.
Require Import UniMath.Bicategories.PseudoFunctors.Display.PseudoFunctorBicat.
Require Import UniMath.Bicategories.PseudoFunctors.PseudoFunctor.
Import PseudoFunctor.Notations.
Section IdentityFunctor.
Variable (C : bicat).
Definition id_functor_d : psfunctor_data C C.
Proof.
use make_psfunctor_data.
- exact (λ x, x).
- exact (λ _ _ x, x).
- exact (λ _ _ _ _ x, x).
- exact (λ x, id2 _).
- exact (λ _ _ _ _ _, id2 _).
Defined.
Definition id_functor_laws : psfunctor_laws id_functor_d.
Proof.
repeat split.
- intros a b f ; cbn in ×.
rewrite id2_rwhisker.
rewrite !id2_left.
reflexivity.
- intros a b f ; cbn in ×.
rewrite lwhisker_id2.
rewrite !id2_left.
reflexivity.
- intros a b c d f g h ; cbn in ×.
rewrite lwhisker_id2, id2_rwhisker.
rewrite !id2_left, !id2_right.
reflexivity.
- intros a b c f g h α ; cbn in ×.
rewrite !id2_left, !id2_right.
reflexivity.
- intros a b c f g h α ; cbn in ×.
rewrite !id2_left, !id2_right.
reflexivity.
Qed.
Definition id_psfunctor : psfunctor C C.
Proof.
use make_psfunctor.
- exact id_functor_d.
- exact id_functor_laws.
- split ; cbn ; intros ; is_iso.
Defined.
End IdentityFunctor.
Require Import UniMath.MoreFoundations.All.
Require Import UniMath.CategoryTheory.Core.Categories.
Require Import UniMath.CategoryTheory.Core.Functors.
Require Import UniMath.CategoryTheory.PrecategoryBinProduct.
Require Import UniMath.Bicategories.Core.Bicat. Import Bicat.Notations.
Require Import UniMath.Bicategories.Core.Invertible_2cells.
Require Import UniMath.Bicategories.Core.BicategoryLaws.
Require Import UniMath.Bicategories.PseudoFunctors.Display.PseudoFunctorBicat.
Require Import UniMath.Bicategories.PseudoFunctors.PseudoFunctor.
Import PseudoFunctor.Notations.
Section IdentityFunctor.
Variable (C : bicat).
Definition id_functor_d : psfunctor_data C C.
Proof.
use make_psfunctor_data.
- exact (λ x, x).
- exact (λ _ _ x, x).
- exact (λ _ _ _ _ x, x).
- exact (λ x, id2 _).
- exact (λ _ _ _ _ _, id2 _).
Defined.
Definition id_functor_laws : psfunctor_laws id_functor_d.
Proof.
repeat split.
- intros a b f ; cbn in ×.
rewrite id2_rwhisker.
rewrite !id2_left.
reflexivity.
- intros a b f ; cbn in ×.
rewrite lwhisker_id2.
rewrite !id2_left.
reflexivity.
- intros a b c d f g h ; cbn in ×.
rewrite lwhisker_id2, id2_rwhisker.
rewrite !id2_left, !id2_right.
reflexivity.
- intros a b c f g h α ; cbn in ×.
rewrite !id2_left, !id2_right.
reflexivity.
- intros a b c f g h α ; cbn in ×.
rewrite !id2_left, !id2_right.
reflexivity.
Qed.
Definition id_psfunctor : psfunctor C C.
Proof.
use make_psfunctor.
- exact id_functor_d.
- exact id_functor_laws.
- split ; cbn ; intros ; is_iso.
Defined.
End IdentityFunctor.