Library UniMath.NumberSystems.NaturalNumbersAlgebra
Require Export UniMath.Foundations.NaturalNumbers.
Require Import UniMath.MoreFoundations.Tactics.
Require Import UniMath.MoreFoundations.NegativePropositions.
Require Export UniMath.Algebra.Archimedean.
Require Export UniMath.Algebra.Domains_and_Fields.
Require Export UniMath.Algebra.IteratedBinaryOperations.
Definition nataddabmonoid : abmonoid :=
make_abmonoid (make_setwithbinop natset (λ n m : nat, n + m))
(make_dirprod
(make_dirprod natplusassoc
(@make_isunital natset _ 0 (make_dirprod natplusl0 natplusr0)))
natpluscomm).
Definition natmultabmonoid : abmonoid :=
make_abmonoid
(make_setwithbinop natset (λ n m : nat, n × m))
(make_dirprod
(make_dirprod natmultassoc (@make_isunital natset _ 1 (make_dirprod natmultl1 natmultr1)))
natmultcomm).
Submonoid of non-zero elements in nat
Local Open Scope nat_scope.
Definition natnonzero : @subabmonoid natmultabmonoid.
Proof.
split with (λ a : natset, a ≠ 0). unfold issubmonoid. split.
- unfold issubsetwithbinop. intros a a'.
apply (natneq0andmult _ _ (pr2 a) (pr2 a')).
- apply (ct (natneq, isdecrel_natneq, 1, 0)).
Defined.
Lemma natnonzerocomm (a b : natnonzero) :
(@op natnonzero a b) = (@op natnonzero b a).
Proof.
intros.
apply (invmaponpathsincl _ (isinclpr1carrier _) (@op natnonzero a b) (@op natnonzero b a)).
simpl. apply natmultcomm.
Defined.
Theorem nat_plus_commutativity : isCommutative_fun_mon nataddabmonoid.
Proof.
intros ? ? ?. apply weqtoeqstn.
intermediate_weq (∑ i, stn (x i)).
- intermediate_weq (∑ i, stn (x(f i))).
+ apply invweq. rewrite iterop_fun_nat. apply weqstnsum1.
+ apply (weqfp _ (stn∘x)).
- rewrite iterop_fun_nat. apply weqstnsum1.
Defined.
Arguments nat_plus_commutativity {_} _ _.
Definition finsum {X} (fin : isfinite X) (f : X → nat) : nat.
Proof.
intros.
unfold isfinite,finstruct,nelstruct in fin.
simple refine (squash_to_set
isasetnat
(λ (x : ∑ n, stn n ≃ X), iterop_fun_mon (M := nataddabmonoid) (f ∘ pr2 x))
_ fin).
intros.
induction x as [n x].
induction x' as [n' x'].
assert (p := weqtoeqstn (invweq x' ∘ x)%weq).
induction p.
assert (w := nat_plus_commutativity (f ∘ x') (invweq x' ∘ x)%weq).
simple refine (_ @ w).
unfold iterop_fun_mon.
apply maponpaths. rewrite weqcomp_to_funcomp. apply funextfun; intro i.
simpl. apply maponpaths. exact (! homotweqinvweq x' (x i)).
Defined.
nat as a commutative rig
Definition natcommrig : commrig.
Proof.
split with (make_setwith2binop natset (make_dirprod (λ n m : nat, n + m) (λ n m : nat, n × m))).
split.
- split.
+ split with
(make_dirprod
(make_dirprod
(make_dirprod natplusassoc (@make_isunital natset _ 0 (make_dirprod natplusl0 natplusr0)))
natpluscomm)
(make_dirprod natmultassoc (@make_isunital natset _ 1 (make_dirprod natmultl1 natmultr1)))).
apply (make_dirprod natmult0n natmultn0).
+ apply (make_dirprod natldistr natrdistr).
- unfold iscomm. apply natmultcomm.
Defined.
Lemma nattorig_nat :
∏ n : nat, nattorig (X := natcommrig) n = n.
Proof.
induction n as [|n IHn].
reflexivity.
rewrite nattorigS, IHn.
reflexivity.
Qed.
Local Open Scope rig_scope.
Lemma isplushrelnatgth : @isbinophrel nataddabmonoid natgth.
Proof.
split. apply natgthandplusl. apply natgthandplusr.
Defined.
Lemma isinvplushrelnatgth : @isinvbinophrel nataddabmonoid natgth.
Proof.
split. apply natgthandpluslinv. apply natgthandplusrinv.
Defined.
Lemma isinvmulthrelnatgth : @isinvbinophrel natmultabmonoid natgth.
Proof.
split.
- intros a b c r. apply (natlthandmultlinv _ _ _ r).
- intros a b c r. apply (natlthandmultrinv _ _ _ r).
Defined.
Lemma isrigmultgtnatgth : isrigmultgt natcommrig natgth.
Proof.
intros a.
induction a as [|a IHa].
- intros ? ? ? rab rcd. contradicts rab (negnatgth0n b).
- intros ? ? ? rab rcd.
induction b as [|b IHb].
+ simpl.
rewrite 2 natplusr0.
apply natlthandmultl.
× exact tt.
× exact rcd.
+ simpl.
set (rer := abmonoidrer nataddabmonoid).
unfold op1, op2; simpl.
rewrite (rer _ _ _ d). rewrite (rer _ _ _ c).
unfold op1, op2; simpl.
rewrite (natpluscomm c d).
apply (natlthandplusr (a × d + b × c) (a × c + b × d) (d + c)).
apply (IHa _ _ _ rab rcd).
Defined.
Lemma isinvrigmultgtnatgth : isinvrigmultgt natcommrig natgth.
Proof.
set (rer := abmonoidrer nataddabmonoid).
simpl in rer. apply isinvrigmultgtif.
intros a b c d. generalize a b c. clear a b c.
induction d as [ | d IHd ].
- intros a b c g gab. change (pr1 ((a × c + b × 0) > (a × 0 + b × c))) in g.
destruct c as [ | c ].
+ rewrite (natmultn0 _) in g. destruct (isirreflnatgth _ g).
+ apply natgthsn0.
- intros a b c g gab. destruct c as [ | c ].
+ change (pr1 ((a × 0 + b × S d) > (a × S d + b × 0))) in g.
rewrite (natmultn0 _) in g. rewrite (natmultn0 _) in g.
rewrite (natplusl0 _) in g. rewrite (natplusr0 _) in g.
set (g' := natgthandmultrinv _ _ _ g).
destruct (isasymmnatgth _ _ gab g').
+ change (pr1 (natgth (a × S c + b × S d) (a × S d + b × S c))) in g.
rewrite (multnsm _ _) in g. rewrite (multnsm _ _) in g.
rewrite (multnsm _ _) in g. rewrite (multnsm _ _) in g.
rewrite (rer _ (a × c) _ _) in g. rewrite (rer _ (a × d) _ _) in g.
set (g' := natgthandpluslinv _ _ (a + b) g). apply (IHd a b c g' gab).
Defined.
Lemma isplushrelnatlth : @isbinophrel nataddabmonoid natlth.
Proof.
split.
- intros a b c. apply (natgthandplusl b a c).
- intros a b c. apply (natgthandplusr b a c).
Defined.
Lemma isinvplushrelnatlth : @isinvbinophrel nataddabmonoid natlth.
Proof.
split.
- intros a b c. apply (natgthandpluslinv b a c).
- intros a b c. apply (natgthandplusrinv b a c).
Defined.
Lemma isinvmulthrelnatlth : @isinvbinophrel natmultabmonoid natlth.
Proof.
split.
- intros a b c r. apply (natlthandmultlinv _ _ _ r).
- intros a b c r. apply (natlthandmultrinv _ _ _ r).
Defined.
Lemma isplushrelnatleh : @isbinophrel nataddabmonoid natleh.
Proof.
split. apply natlehandplusl. apply natlehandplusr.
Defined.
Lemma isinvplushrelnatleh : @isinvbinophrel nataddabmonoid natleh.
Proof.
split. apply natlehandpluslinv. apply natlehandplusrinv.
Defined.
Lemma ispartinvmulthrelnatleh : @ispartinvbinophrel natmultabmonoid (λ x, x ≠ 0) natleh.
Proof.
split.
- intros a b c s r. apply (natlehandmultlinv _ _ _ s r).
- intros a b c s r. apply (natlehandmultrinv _ _ _ s r).
Defined.
Lemma isplushrelnatgeh : @isbinophrel nataddabmonoid natgeh.
Proof.
split.
- intros a b c. apply (natlehandplusl b a c).
- intros a b c. apply (natlehandplusr b a c).
Defined.
Lemma isinvplushrelnatgeh : @isinvbinophrel nataddabmonoid natgeh.
Proof.
split.
- intros a b c. apply (natlehandpluslinv b a c).
- intros a b c. apply (natlehandplusrinv b a c).
Defined.
Lemma ispartinvmulthrelnatgeh : @ispartinvbinophrel natmultabmonoid (λ x, x ≠ 0) natgeh.
Proof.
split.
- intros a b c s r. apply (natlehandmultlinv _ _ _ s r).
- intros a b c s r. apply (natlehandmultrinv _ _ _ s r).
Defined.
nat is an archimedean rig
Lemma isarchnat_diff :
∏ (y1 y2 : nat),
y1 > y2 → ∃ n : nat, n × y1 > 1 + n × y2.
Proof.
intros y1 y2 Hy.
apply natlthchoice2 in Hy.
induction Hy as [Hy | <-].
- apply hinhpr.
∃ 1%nat.
exact Hy.
- apply hinhpr.
∃ 2%nat.
rewrite !multsnm ; simpl.
rewrite natplusr0.
apply natgthandplusl, natgthsnn.
Defined.
Lemma isarchnat_gth :
∏ x : nat, ∃ n : nat, n > x.
Proof.
intros n.
apply hinhpr.
∃ (S n).
now apply natgthsnn.
Defined.
Lemma isarchnat_pos :
∏ x : nat, ∃ n : nat, n + x > 0.
Proof.
intros n.
apply hinhpr.
now ∃ 1%nat.
Defined.
Lemma isarchnat :
isarchrig (X := natcommrig) natgth.
Proof.
repeat split.
- intros y1 y2 Hy.
generalize (isarchnat_diff y1 y2 Hy).
apply hinhfun.
intros n.
∃ (pr1 n).
rewrite nattorig_nat.
exact (pr2 n).
- intros n.
generalize (isarchnat_gth n).
apply hinhfun.
intros n'.
∃ (pr1 n').
rewrite nattorig_nat.
exact (pr2 n').
- intros n.
generalize (isarchnat_pos n).
apply hinhfun.
intros n'.
∃ (pr1 n').
rewrite nattorig_nat.
exact (pr2 n').
Defined.