Library UniMath.Algebra.IteratedBinaryOperations
Require Export UniMath.Combinatorics.Lists.
Require Export UniMath.Combinatorics.FiniteSequences.
Require Export UniMath.Algebra.RigsAndRings.
Require Export UniMath.Foundations.UnivalenceAxiom.
Require Import UniMath.MoreFoundations.Tactics.
Require Import UniMath.Algebra.Groups.
Require Import UniMath.MoreFoundations.NegativePropositions.
Local Notation "[]" := Lists.nil (at level 0, format "[]").
Local Infix "::" := cons.
Require Export UniMath.Combinatorics.FiniteSequences.
Require Export UniMath.Algebra.RigsAndRings.
Require Export UniMath.Foundations.UnivalenceAxiom.
Require Import UniMath.MoreFoundations.Tactics.
Require Import UniMath.Algebra.Groups.
Require Import UniMath.MoreFoundations.NegativePropositions.
Local Notation "[]" := Lists.nil (at level 0, format "[]").
Local Infix "::" := cons.
general associativity for binary operations on types
Section BinaryOperations.
Context {X:UU} (unel:X) (op:binop X).
Definition iterop_list : list X → X :=
foldr1 op unel.
Definition iterop_fun {n} (x:stn n→X) : X.
Proof.
intros.
induction n as [|n _].
{ exact unel. }
{ induction n as [|n I].
{ exact (x lastelement). }
{ exact (op (I (x ∘ dni lastelement)) (x lastelement)). }}
Defined.
Definition iterop_seq : Sequence X → X.
Proof.
intros x.
exact (iterop_fun x).
Defined.
Definition iterop_list_list : list(list X) → X.
Proof.
intros w.
exact (iterop_list (map iterop_list w)).
Defined.
Definition iterop_fun_fun {n} {m:stn n → nat} : (∏ i (j:stn (m i)), X) → X.
Proof.
intros x.
exact (iterop_fun (λ i, iterop_fun (x i))).
Defined.
Definition iterop_seq_seq : Sequence (Sequence X) → X.
Proof.
intros x.
exact (iterop_fun_fun (λ i j, x i j)).
Defined.
Definition isAssociative_list := ∏ (x:list (list X)), iterop_list (Lists.flatten x) = iterop_list_list x.
Definition isAssociative_fun :=
∏ n (m:stn n → nat) (x : ∏ i (j:stn (m i)), X), iterop_fun (StandardFiniteSets.flatten' x) = iterop_fun_fun x.
Definition isAssociative_seq :=
∏ (x : Sequence (Sequence X)), iterop_seq (FiniteSequences.flatten x) = iterop_seq_seq x.
Local Open Scope stn.
Definition isCommutative_fun :=
∏ n (x:⟦n⟧ → X) (f:⟦n⟧≃⟦n⟧), iterop_fun (x ∘ f) = iterop_fun x.
Lemma assoc_fun_to_seq : isAssociative_fun → isAssociative_seq.
Proof.
intros assoc x.
exact (assoc _ _ (λ i j, x i j)).
Defined.
Lemma assoc_seq_to_fun : isAssociative_seq → isAssociative_fun.
Proof.
intros assoc n m x.
exact (assoc (functionToSequence (λ i, functionToSequence (x i)))).
Defined.
Definition iterop_list_step (runax : isrunit op unel) (x:X) (xs:list X) :
iterop_list (x::xs) = op x (iterop_list xs).
Proof.
generalize x; clear x.
apply (list_ind (λ xs, ∏ x : X, iterop_list (x :: xs) = op x (iterop_list xs))).
{ intro x. simpl. apply pathsinv0,runax. }
intros y rest IH x.
reflexivity.
Defined.
Definition iterop_fun_step' (lunax : islunit op unel) {m} (xs:stn m → X) (x:X) :
iterop_fun (append_vec xs x) = op (iterop_fun xs) x.
Proof.
unfold iterop_fun at 1.
simpl.
induction m as [|m _].
- simpl. rewrite append_vec_compute_2. apply pathsinv0. apply lunax.
- simpl. rewrite append_vec_compute_2.
apply (maponpaths (λ y, op y x)). apply maponpaths.
apply append_and_drop_fun.
Defined.
Definition iterop_fun_step (lunax : islunit op unel) {m} (x:stn(S m) → X) :
iterop_fun x = op (iterop_fun (x ∘ dni lastelement)) (x lastelement).
Proof.
intros.
unfold iterop_fun at 1.
simpl.
induction m as [|m _].
- simpl. apply pathsinv0, lunax.
- simpl. reflexivity.
Defined.
Definition iterop_fun_append (lunax : islunit op unel) {m} (x:stn m → X) (y:X) :
iterop_fun (append_vec x y) = op (iterop_fun x) y.
Proof.
rewrite (iterop_fun_step lunax).
rewrite append_vec_compute_2.
apply (maponpaths (λ x, op (iterop_fun x) y)).
apply funextfun; intro i.
simpl.
rewrite append_vec_compute_1.
reflexivity.
Defined.
End BinaryOperations.
general associativity for monoids
Local Open Scope multmonoid.
Section Monoids.
Context {M:monoid}.
Let oo := @op M.
Let uu := unel M.
Definition iterop_fun_mon {n} (x:stn n→M) : M := iterop_fun uu oo x.
Definition iterop_list_mon : list M → M := iterop_list uu oo.
Definition iterop_seq_mon : Sequence M → M := iterop_seq uu oo.
Definition iterop_seq_seq_mon : Sequence (Sequence M) → M := iterop_seq_seq uu oo.
Definition iterop_list_list_mon : list (list M) → M := iterop_list_list uu oo.
Lemma iterop_seq_mon_len1 (x : stn 1 → M) :
iterop_seq_mon (functionToSequence x) = x lastelement.
Proof.
reflexivity.
Defined.
Lemma iterop_seq_mon_step {n} (x:stn (S n) → M) :
iterop_seq_mon (S n,,x) = iterop_seq_mon (n,,x ∘ dni lastelement) × x lastelement.
Proof.
intros. induction n as [|n _].
- cbn. apply pathsinv0, lunax.
- reflexivity.
Defined.
Lemma iterop_list_mon_nil : iterop_list_mon [] = 1.
Proof.
reflexivity.
Defined.
Lemma iterop_list_mon_step (x:M) (xs:list M) :
iterop_list_mon (x::xs) = x × iterop_list_mon xs.
Proof.
apply iterop_list_step. apply runax.
Defined.
Lemma iterop_list_mon_singleton (x : M) : iterop_list_mon (x::[]) = x.
Proof.
reflexivity.
Defined.
Local Lemma iterop_seq_mon_append (x:Sequence M) (m:M) :
iterop_seq_mon (append x m) = iterop_seq_mon x × m.
Proof.
revert x m.
intros [n x] ?. unfold append. rewrite iterop_seq_mon_step.
rewrite append_vec_compute_2.
apply (maponpaths (λ a, a × m)).
apply (maponpaths (λ x, iterop_seq_mon (n,,x))).
apply funextfun; intros [i b]; simpl.
now rewrite append_vec_compute_1.
Defined.
Local Lemma iterop_seq_seq_mon_step {n} (x:stn (S n) → Sequence M) :
iterop_seq_seq_mon (S n,,x) = iterop_seq_seq_mon (n,,x ∘ dni lastelement) × iterop_seq_mon (x lastelement).
Proof.
intros.
induction n as [|n _].
- simpl. apply pathsinv0,lunax.
- reflexivity.
Defined.
Lemma iterop_seq_mon_homot {n} (x y : stn n → M) :
x ¬ y → iterop_seq_mon(n,,x) = iterop_seq_mon(n,,y).
Proof.
revert x y. induction n as [|n N].
- reflexivity.
- intros x y h. rewrite 2 iterop_seq_mon_step.
apply two_arg_paths.
+ apply N. apply funhomot. exact h.
+ apply h.
Defined.
End Monoids.
Section Monoids2.
Context (M:monoid).
Let op := @op M.
Let unel := unel M.
Definition isAssociative_list_mon := isAssociative_list unel op.
Definition isAssociative_fun_mon := isAssociative_fun unel op.
Definition isAssociative_seq_mon := isAssociative_seq unel op.
Definition isCommutative_fun_mon := isCommutative_fun unel op.
End Monoids2.
The general associativity theorem.
Lemma iterop_list_mon_concatenate {M : monoid} (l s : list M) :
iterop_list_mon (Lists.concatenate l s) = iterop_list_mon l × iterop_list_mon s.
Proof.
revert l. apply list_ind.
- apply pathsinv0, lunax.
- intros x xs J. rewrite Lists.concatenateStep.
unfold iterop_list_mon.
rewrite 2 (iterop_list_step _ _ (runax M)).
rewrite assocax. apply maponpaths. exact J.
Defined.
Theorem associativityOfProducts_list (M:monoid) : isAssociative_list (unel M) (@op M).
Proof.
This proof comes from the Associativity theorem,
unfold isAssociative_list.
apply list_ind.
- simpl. reflexivity.
- intros x xs I. simpl in I.
rewrite Lists.flattenStep. refine (iterop_list_mon_concatenate _ _ @ _).
unfold iterop_list_list. rewrite mapStep.
rewrite (iterop_list_step _ _ (runax M)).
+ apply (maponpaths (λ x, _ × x)). exact I.
Defined.
Theorem associativityOfProducts_seq (M:monoid) : isAssociative_seq (unel M) (@op M).
Proof.
apply list_ind.
- simpl. reflexivity.
- intros x xs I. simpl in I.
rewrite Lists.flattenStep. refine (iterop_list_mon_concatenate _ _ @ _).
unfold iterop_list_list. rewrite mapStep.
rewrite (iterop_list_step _ _ (runax M)).
+ apply (maponpaths (λ x, _ × x)). exact I.
Defined.
Theorem associativityOfProducts_seq (M:monoid) : isAssociative_seq (unel M) (@op M).
Proof.
This proof comes from the Associativity theorem,
unfold isAssociative_seq; intros. induction x as [n x].
induction n as [|n IHn].
{ reflexivity. }
change (flatten _) with (flatten ((n,,x): NonemptySequence _)).
rewrite flattenStep.
change (lastValue _) with (x lastelement).
unfold iterop_seq_seq. simpl.
unfold iterop_fun_fun.
rewrite (iterop_fun_step _ _ (lunax M)).
generalize (x lastelement) as z; intro z.
unfold iterop_seq.
induction z as [m z].
induction m as [|m IHm].
{ simpl. rewrite runax.
simple refine (_ @ IHn (x ∘ dni lastelement)).
rewrite concatenate'_r0.
now apply (two_arg_paths_b (natplusr0 (stnsum (length ∘ (x ∘ dni lastelement))))). }
change (length (S m,, z)) with (S m). change (sequenceToFunction (S m,,z)) with z.
rewrite (iterop_fun_step _ _ (lunax M)). rewrite concatenateStep.
generalize (z lastelement) as w; intros.
rewrite <- assocax. unfold append.
Opaque iterop_fun. simpl. Transparent iterop_fun.
rewrite (iterop_fun_append _ _ (lunax M)).
apply (maponpaths (λ u, u×w)). simpl in IHm. apply IHm.
Defined.
Corollary associativityOfProducts' {M:monoid} {n} (f:stn n → nat) (x:stn (stnsum f) → M) :
iterop_seq_mon (stnsum f,,x) = iterop_seq_seq_mon (partition f x).
Proof.
intros. refine (_ @ associativityOfProducts_seq M (partition f x)).
assert (L := flatten_partition f x). apply pathsinv0. exact (iterop_seq_mon_homot _ _ L).
Defined.
induction n as [|n IHn].
{ reflexivity. }
change (flatten _) with (flatten ((n,,x): NonemptySequence _)).
rewrite flattenStep.
change (lastValue _) with (x lastelement).
unfold iterop_seq_seq. simpl.
unfold iterop_fun_fun.
rewrite (iterop_fun_step _ _ (lunax M)).
generalize (x lastelement) as z; intro z.
unfold iterop_seq.
induction z as [m z].
induction m as [|m IHm].
{ simpl. rewrite runax.
simple refine (_ @ IHn (x ∘ dni lastelement)).
rewrite concatenate'_r0.
now apply (two_arg_paths_b (natplusr0 (stnsum (length ∘ (x ∘ dni lastelement))))). }
change (length (S m,, z)) with (S m). change (sequenceToFunction (S m,,z)) with z.
rewrite (iterop_fun_step _ _ (lunax M)). rewrite concatenateStep.
generalize (z lastelement) as w; intros.
rewrite <- assocax. unfold append.
Opaque iterop_fun. simpl. Transparent iterop_fun.
rewrite (iterop_fun_append _ _ (lunax M)).
apply (maponpaths (λ u, u×w)). simpl in IHm. apply IHm.
Defined.
Corollary associativityOfProducts' {M:monoid} {n} (f:stn n → nat) (x:stn (stnsum f) → M) :
iterop_seq_mon (stnsum f,,x) = iterop_seq_seq_mon (partition f x).
Proof.
intros. refine (_ @ associativityOfProducts_seq M (partition f x)).
assert (L := flatten_partition f x). apply pathsinv0. exact (iterop_seq_mon_homot _ _ L).
Defined.
generalized commutativity
Local Notation "s □ x" := (append s x) (at level 64, left associativity).
Ltac change_lhs a := match goal with |- @paths ?T ?x ?y
⇒ change (@paths T x y) with (@paths T a y) end.
Ltac change_rhs a := match goal with |- @paths ?T ?x ?y
⇒ change (@paths T x y) with (@paths T x a) end.
Local Open Scope stn.
Lemma commutativityOfProducts_helper {M:abmonoid} {n} (x:stn (S n) → M) (j:stn (S n)) :
iterop_seq_mon (S n,,x) = iterop_seq_mon (n,,x ∘ dni j) × x j.
Proof.
induction j as [j jlt].
assert (jle := natlthsntoleh _ _ jlt).
Local Open Scope transport.
set (f := nil □ j □ S O □ n-j : stn 3 → nat).
assert (B : stnsum f = S n).
{ unfold stnsum, f; simpl. repeat unfold append_vec; simpl. rewrite natplusassoc.
rewrite (natpluscomm 1). rewrite <- natplusassoc.
rewrite natpluscomm. apply (maponpaths S). rewrite natpluscomm. now apply minusplusnmm. }
set (r := weqfibtototal _ _ (λ k, eqweqmap (maponpaths (λ n, k < n : UU) B) ) :
stn (stnsum f) ≃ stn (S n)).
set (x' := x ∘ r).
intermediate_path (iterop_seq_mon (stnsum f,, x')).
{ induction B. apply iterop_seq_mon_homot. intros i. unfold x'.
simpl. apply maponpaths.
apply ( invmaponpathsincl _ ( isinclstntonat _ ) _ _).
reflexivity. }
unfold iterop_seq_mon. unfold iterop_seq.
refine (associativityOfProducts' f x' @ _).
unfold partition.
rewrite 3 iterop_seq_seq_mon_step.
change (iterop_seq_seq_mon (0,,_)) with (unel M); rewrite lunax.
set (s0 := dni lastelement (dni lastelement (@lastelement 0))).
unfold funcomp at 1 2 3.
set (s1 := dni lastelement (@lastelement 1)).
set (s2 := @lastelement 2).
unfold partition'. unfold inverse_lexicalEnumeration.
change (f s0) with j; change (f s1) with (S O); change (f s2) with (n-j).
set (f' := nil □ j □ n-j : stn 2 → nat).
assert (B' : stnsum f' = n).
{ unfold stnsum, f'; simpl. repeat unfold append_vec; simpl.
rewrite natpluscomm. now apply minusplusnmm. }
set (r' := weqfibtototal _ _ (λ k, eqweqmap (maponpaths (λ n, k < n : UU) B') ) :
stn (stnsum f') ≃ stn n).
set (x'' := x ∘ dni (j,, jlt) ∘ r').
intermediate_path (iterop_seq_mon (stnsum f',, x'') × x (j,, jlt)).
{ assert (L := iterop_seq_mon_len1 (λ j0 : stn 1, x' ((weqstnsum1 f) (s1,, j0)))).
unfold functionToSequence in L.
rewrite L. rewrite assocax. refine (transportf (λ k, _×k=_) (commax _ _ _) _).
rewrite <- assocax.
apply two_arg_paths.
{ refine (_ @ !associativityOfProducts' f' x'').
unfold partition.
rewrite 2 iterop_seq_seq_mon_step.
change (iterop_seq_seq_mon (0,,_)) with (unel M); rewrite lunax.
apply two_arg_paths.
{ unfold funcomp. set (s0' := dni lastelement (@lastelement 0)).
unfold partition'. change (f' s0') with j.
apply iterop_seq_mon_homot. intro i. unfold x', x'', funcomp. apply maponpaths.
apply subtypePath_prop.
change_lhs (stntonat _ i).
unfold dni. unfold di.
unfold stntonat.
match goal with |- context [ match ?x with _ ⇒ _ end ]
⇒ induction x as [c|c] end.
{ reflexivity. }
{ apply fromempty. assert (P := c : i ≥ j); clear c.
exact (natlthtonegnatgeh _ _ (stnlt i) P). } }
{ unfold partition'. change (f' lastelement) with (n-j).
apply iterop_seq_mon_homot. intro i. unfold x', x'', funcomp. apply maponpaths.
apply subtypePath_prop. change_lhs (j+1+i). unfold dni, di.
unfold stntonat.
match goal with |- context [ match ?x with _ ⇒ _ end ]
⇒ induction x as [c|c] end.
{ apply fromempty. exact (negnatlthplusnmn j i c). }
{ change_rhs (1 + (j + i)). rewrite <- natplusassoc. rewrite (natpluscomm j 1).
reflexivity. } } }
unfold x'; simpl. apply maponpaths.
apply subtypePath_prop. change (j+0 = j). apply natplusr0. }
{ apply (maponpaths (λ k, k × _)). induction (!B').
change_rhs (iterop_seq_mon (n,, x ∘ dni (j,, jlt))).
apply iterop_seq_mon_homot; intros i.
unfold x''; simpl. apply maponpaths.
apply ( invmaponpathsincl _ ( isinclstntonat _ ) _ _).
reflexivity. }
Qed.
Theorem commutativityOfProducts {M:abmonoid} {n} (x:stn n→M) (f:stn n ≃ stn n) :
iterop_seq_mon (n,,x) = iterop_seq_mon (n,,x∘f).
Proof.
intros. induction n as [|n IH].
- reflexivity.
- set (i := @lastelement n); set (i' := f i).
rewrite (iterop_seq_mon_step (x ∘ f)).
change ((x ∘ f) lastelement) with (x i').
rewrite (commutativityOfProducts_helper x i').
apply (maponpaths (λ k, k×_)).
set (f' := weqoncompl_ne f i (stnneq i) (stnneq i') : stn_compl i ≃ stn_compl i').
set (g := weqdnicompl i); set (g' := weqdnicompl i').
apply pathsinv0.
set (h := (invweq g' ∘ f' ∘ g)%weq).
assert (L : x ∘ f ∘ dni lastelement ¬ x ∘ dni i' ∘ h).
{ intro j. unfold funcomp. apply maponpaths.
apply (invmaponpathsincl _ ( isinclstntonat _ ) _ _).
unfold h. rewrite 2 weqcomp_to_funcomp_app. rewrite pr1_invweq.
induction j as [j J]. unfold g, i, f', g', stntonat.
rewrite <- (weqdnicompl_compute i').
unfold pr1compl_ne.
rewrite homotweqinvweq.
rewrite (weqoncompl_ne_compute f i (stnneq i) (stnneq i') _).
apply maponpaths, maponpaths.
apply subtypePath_prop.
unfold stntonat.
now rewrite weqdnicompl_compute. }
rewrite (IH (x ∘ dni i') h).
now apply iterop_seq_mon_homot.
Defined.
finite products (or sums) in monoids
Require Export UniMath.Combinatorics.FiniteSets.
Require Export UniMath.Foundations.NaturalNumbers.
Section NatCard.
first a toy warm-up with addition in nat, based on cardinalities of standard finite sets
Theorem nat_plus_associativity {n} {m:stn n→nat} (k:∏ (ij : ∑ i, stn (m i)), nat) :
stnsum (λ i, stnsum (curry k i)) = stnsum (k ∘ lexicalEnumeration m).
Proof.
intros. apply weqtoeqstn.
intermediate_weq (∑ i, stn (stnsum (curry k i))).
{ apply invweq. apply weqstnsum1. }
intermediate_weq (∑ i j, stn (curry k i j)).
{ apply weqfibtototal; intro i. apply invweq. apply weqstnsum1. }
intermediate_weq (∑ ij, stn (k ij)).
{ exact (weqtotal2asstol (stn ∘ m) (stn ∘ k)). }
intermediate_weq (∑ ij, stn (k (lexicalEnumeration m ij))).
{ apply (weqbandf (inverse_lexicalEnumeration m)). intro ij. apply eqweqmap.
apply (maponpaths stn), (maponpaths k). apply pathsinv0, homotinvweqweq. }
apply inverse_lexicalEnumeration.
Defined.
Corollary nat_plus_associativity' n (m:stn n→nat) (k:∏ i, stn (m i) → nat) :
stnsum (λ i, stnsum (k i)) = stnsum (uncurry (Z := λ _,_) k ∘ lexicalEnumeration m).
Proof. intros. exact (nat_plus_associativity (uncurry k)). Defined.
Lemma iterop_fun_nat {n:nat} (x:stn n→nat) : iterop_fun 0 add x = stnsum x.
Proof.
intros. induction n as [|n I].
- reflexivity.
- induction n as [|n _].
+ reflexivity.
+ simple refine (iterop_fun_step 0 add natplusl0 _ @ _ @ ! stnsum_step _).
apply (maponpaths (λ i, i + x lastelement)). apply I.
Defined.
Theorem associativityNat : isAssociative_fun 0 add.
Proof.
intros n m x. unfold iterop_fun_fun. apply pathsinv0. rewrite 2 iterop_fun_nat.
intermediate_path (stnsum (λ i : stn n, stnsum (x i))).
- apply maponpaths. apply funextfun; intro. apply iterop_fun_nat.
- now apply nat_plus_associativity'.
Defined.
Definition finsum' {X} (fin : isfinite X) (f : X → nat) : nat.
Proof.
intros. exact (fincard (isfinitetotal2 (stn∘f) fin (λ i, isfinitestn (f i)))).
Defined.
End NatCard.
Definition MultipleOperation (X:UU) : UU := UnorderedSequence X → X.
Section Mult.
Context {X:UU} (op : MultipleOperation X).
Definition composeMultipleOperation : UnorderedSequence (UnorderedSequence X) → X.
Proof.
intros s. exact (op (composeUnorderedSequence op s)).
Defined.
Definition isAssociativeMultipleOperation := ∏ x, op (flattenUnorderedSequence x) = composeMultipleOperation x.
End Mult.
Definition AssociativeMultipleOperation {X} := ∑ op:MultipleOperation X, isAssociativeMultipleOperation op.
Definition iterop_unoseq_mon {M:abmonoid} : MultipleOperation M.
Proof.
intros m.
induction m as [J m].
induction J as [I fin].
simpl in m.
unfold isfinite, finstruct in fin.
simple refine (squash_to_set
(setproperty M)
(λ (g : finstruct I), iterop_fun_mon (m ∘ g : _ → M))
_
fin).
intros. induction x as [n x]. induction x' as [n' x'].
assert (p := weqtoeqstn (invweq x' ∘ x)%weq).
induction p.
assert (w := commutativityOfProducts (m ∘ x') (invweq x' ∘ x)%weq).
simple refine (_ @ ! w); clear w. unfold iterop_seq_mon, iterop_fun_mon, iterop_seq.
apply maponpaths. rewrite weqcomp_to_funcomp. apply funextfun; intro i.
simpl. apply maponpaths. exact (! homotweqinvweq x' (x i)).
Defined.
Definition iterop_unoseq_abgr {G:abgr} : MultipleOperation G.
Proof.
exact (iterop_unoseq_mon (M:=G)).
Defined.
Definition sum_unoseq_ring {R:ring} : MultipleOperation R.
Proof.
exact (iterop_unoseq_mon (M:=R)).
Defined.
Definition product_unoseq_ring {R:commring} : MultipleOperation R.
Proof.
exact (iterop_unoseq_mon (M:=ringmultabmonoid R)).
Defined.
Definition iterop_unoseq_unoseq_mon {M:abmonoid} : UnorderedSequence (UnorderedSequence M) → M.
Proof.
intros s. exact (composeMultipleOperation iterop_unoseq_mon s).
Defined.
Definition abmonoidMultipleOperation {M:abmonoid} (op := @iterop_unoseq_mon M) : MultipleOperation M
:= iterop_unoseq_mon.
Theorem isAssociativeMultipleOperation_abmonoid {M:abmonoid}
: isAssociativeMultipleOperation (@iterop_unoseq_mon M).
Proof.
Abort.