Library UniMath.CategoryTheory.limits.graphs.pullbacks
Pullbacks defined in terms of limits
Require Import UniMath.Foundations.PartD.
Require Import UniMath.Foundations.Propositions.
Require Import UniMath.Foundations.Sets.
Require Import UniMath.MoreFoundations.Tactics.
Require Import UniMath.Combinatorics.StandardFiniteSets.
Require Import UniMath.CategoryTheory.Core.Categories.
Require Import UniMath.CategoryTheory.Core.Isos.
Require Import UniMath.CategoryTheory.Core.Univalence.
Require Import UniMath.CategoryTheory.limits.graphs.limits.
Require Import UniMath.CategoryTheory.limits.graphs.colimits.
Require UniMath.CategoryTheory.limits.pullbacks.
Local Open Scope cat.
Section def_pb.
Variable C : category.
Local Open Scope stn.
Definition One : three := ● 0.
Definition Two : three := ● 1.
Definition Three : three := ● 2.
Definition pullback_graph : graph.
Proof.
∃ three.
use three_rec.
- apply three_rec.
+ apply empty.
+ apply unit.
+ apply empty.
- apply (λ _, empty).
- apply three_rec.
+ apply empty.
+ apply unit.
+ apply empty.
Defined.
Definition pullback_diagram {a b c : C} (f : C ⟦b,a⟧) (g : C⟦c,a⟧) :
diagram pullback_graph C.
Proof.
∃ (three_rec b a c).
use three_rec_dep.
- use three_rec_dep; simpl.
+ apply fromempty.
+ intro x; assumption.
+ apply fromempty.
- intro x; apply fromempty.
- use three_rec_dep; simpl.
+ apply fromempty.
+ intro x; assumption.
+ apply fromempty.
Defined.
Definition PullbCone {a b c : C} (f : C ⟦b,a⟧) (g : C⟦c,a⟧)
(d : C) (f' : C ⟦d, b⟧) (g' : C ⟦d,c⟧)
(H : f' · f = g'· g)
: cone (pullback_diagram f g) d.
Proof.
use make_cone.
- use three_rec_dep; try assumption.
apply (f' · f).
- use three_rec_dep; use three_rec_dep.
+ exact (empty_rect _ ).
+ intro x; apply idpath.
+ exact (empty_rect _ ).
+ exact (empty_rect _ ).
+ exact (empty_rect _ ).
+ exact (empty_rect _ ).
+ exact (empty_rect _ ).
+ intro x; apply (!H).
+ exact (empty_rect _ ).
Defined.
Definition isPullback {a b c d : C} (f : C ⟦b, a⟧) (g : C ⟦c, a⟧)
(p1 : C⟦d,b⟧) (p2 : C⟦d,c⟧) (H : p1 · f = p2· g) : UU :=
isLimCone (pullback_diagram f g) d (PullbCone f g d p1 p2 H).
Definition make_isPullback {a b c d : C} (f : C ⟦b, a⟧) (g : C ⟦c, a⟧)
(p1 : C⟦d,b⟧) (p2 : C⟦d,c⟧) (H : p1 · f = p2· g) :
(∏ e (h : C ⟦e, b⟧) (k : C⟦e,c⟧)(Hk : h · f = k · g ),
iscontr (total2 (fun hk : C⟦e,d⟧ ⇒ dirprod (hk · p1 = h)(hk · p2 = k))))
→
isPullback f g p1 p2 H.
Proof.
intros H' x cx; simpl in ×.
set (H1 := H' x (coneOut cx One) (coneOut cx Three) ).
use (let p : coneOut cx One · f = coneOut cx Three · g := _ in _ ).
{ eapply pathscomp0; [apply (coneOutCommutes cx One Two tt)|].
apply pathsinv0, (coneOutCommutes cx Three Two tt). }
set (H2 := H1 p).
use tpair.
+ ∃ (pr1 (pr1 H2)).
use three_rec_dep.
× apply (pr1 (pr2 (pr1 H2))).
× simpl.
change (three_rec_dep (λ n, C⟦d,_⟧) _ _ _ _) with (p1 · f).
rewrite assoc.
eapply pathscomp0.
eapply cancel_postcomposition, (pr2 (pr1 H2)).
apply (coneOutCommutes cx One Two tt).
× apply (pr2 (pr2 (pr1 H2))).
+ abstract (intro t; apply subtypePath;
[ intro; apply impred; intro; apply C
| destruct t as [t p0];
apply path_to_ctr; split; [ apply (p0 One) | apply (p0 Three) ]]).
Defined.
Definition Pullback {a b c : C} (f : C⟦b, a⟧)(g : C⟦c, a⟧) :=
LimCone (pullback_diagram f g).
Definition make_Pullback {a b c : C} (f : C⟦b, a⟧)(g : C⟦c, a⟧)
(d : C) (p1 : C⟦d,b⟧) (p2 : C ⟦d,c⟧)
(H : p1 · f = p2 · g)
(ispb : isPullback f g p1 p2 H)
: Pullback f g.
Proof.
use tpair.
- use tpair.
+ apply d.
+ use PullbCone; assumption.
- apply ispb.
Defined.
Definition Pullbacks := ∏ (a b c : C)(f : C⟦b, a⟧)(g : C⟦c, a⟧),
Pullback f g.
Definition hasPullbacks := ∏ (a b c : C) (f : C⟦b, a⟧) (g : C⟦c, a⟧),
ishinh (Pullback f g).
Definition PullbackObject {a b c : C} {f : C⟦b, a⟧} {g : C⟦c, a⟧}:
Pullback f g → C := λ H, lim H.
Definition PullbackPr1 {a b c : C} {f : C⟦b, a⟧} {g : C⟦c, a⟧}
(Pb : Pullback f g) : C⟦lim Pb, b⟧ := limOut Pb One.
Definition PullbackPr2 {a b c : C} {f : C⟦b, a⟧} {g : C⟦c, a⟧}
(Pb : Pullback f g) : C⟦lim Pb, c⟧ := limOut Pb Three.
Definition PullbackSqrCommutes {a b c : C} {f : C⟦b, a⟧} {g : C⟦c, a⟧}
(Pb : Pullback f g) :
PullbackPr1 Pb · f = PullbackPr2 Pb · g .
Proof.
eapply pathscomp0; [apply (limOutCommutes Pb One Two tt) |].
apply (!limOutCommutes Pb Three Two tt) .
Qed.
Definition PullbackArrow {a b c : C} {f : C⟦b, a⟧} {g : C⟦c, a⟧}
(Pb : Pullback f g) e (h : C⟦e, b⟧) (k : C⟦e, c⟧)(H : h · f = k · g)
: C⟦e, lim Pb⟧.
Proof.
now use limArrow; use PullbCone.
Defined.
Lemma PullbackArrow_PullbackPr1 {a b c : C} {f : C⟦b, a⟧} {g : C⟦c, a⟧}
(Pb : Pullback f g) e (h : C⟦e, b⟧) (k : C⟦e, c⟧)(H : h · f = k · g) :
PullbackArrow Pb e h k H · PullbackPr1 Pb = h.
Proof.
exact (limArrowCommutes Pb e _ One).
Qed.
Lemma PullbackArrow_PullbackPr2 {a b c : C} {f : C⟦b, a⟧} {g : C⟦c, a⟧}
(Pb : Pullback f g) e (h : C⟦e, b⟧) (k : C⟦e, c⟧)(H : h · f = k · g) :
PullbackArrow Pb e h k H · PullbackPr2 Pb = k.
Proof.
exact (limArrowCommutes Pb e _ Three).
Qed.
Lemma PullbackArrowUnique {a b c d : C} (f : C⟦b, a⟧) (g : C⟦c, a⟧)
(Pb : Pullback f g)
e (h : C⟦e, b⟧) (k : C⟦e, c⟧)
(Hcomm : h · f = k · g)
(w : C⟦e, PullbackObject Pb⟧)
(H1 : w · PullbackPr1 Pb = h) (H2 : w · PullbackPr2 Pb = k) :
w = PullbackArrow Pb _ h k Hcomm.
Proof.
apply path_to_ctr.
use three_rec_dep; try assumption.
set (X:= limOutCommutes Pb Three Two tt).
eapply pathscomp0.
eapply maponpaths, pathsinv0, X.
simpl.
rewrite assoc.
eapply pathscomp0.
apply cancel_postcomposition, H2.
apply (!Hcomm).
Qed.
Definition isPullback_Pullback {a b c : C} {f : C⟦b, a⟧}{g : C⟦c, a⟧}
(P : Pullback f g) :
isPullback f g (PullbackPr1 P) (PullbackPr2 P) (PullbackSqrCommutes P).
Proof.
apply make_isPullback.
intros e h k HK.
use tpair.
- use tpair.
+ apply (PullbackArrow P _ h k HK).
+ split.
× apply PullbackArrow_PullbackPr1.
× apply PullbackArrow_PullbackPr2.
- intro t.
apply subtypePath.
+ intro. apply isapropdirprod; apply C.
+ destruct t as [t p]. simpl.
use (PullbackArrowUnique _ _ P).
× apply e.
× apply (pr1 p).
× apply (pr2 p).
Qed.
Require Import UniMath.Foundations.Propositions.
Require Import UniMath.Foundations.Sets.
Require Import UniMath.MoreFoundations.Tactics.
Require Import UniMath.Combinatorics.StandardFiniteSets.
Require Import UniMath.CategoryTheory.Core.Categories.
Require Import UniMath.CategoryTheory.Core.Isos.
Require Import UniMath.CategoryTheory.Core.Univalence.
Require Import UniMath.CategoryTheory.limits.graphs.limits.
Require Import UniMath.CategoryTheory.limits.graphs.colimits.
Require UniMath.CategoryTheory.limits.pullbacks.
Local Open Scope cat.
Section def_pb.
Variable C : category.
Local Open Scope stn.
Definition One : three := ● 0.
Definition Two : three := ● 1.
Definition Three : three := ● 2.
Definition pullback_graph : graph.
Proof.
∃ three.
use three_rec.
- apply three_rec.
+ apply empty.
+ apply unit.
+ apply empty.
- apply (λ _, empty).
- apply three_rec.
+ apply empty.
+ apply unit.
+ apply empty.
Defined.
Definition pullback_diagram {a b c : C} (f : C ⟦b,a⟧) (g : C⟦c,a⟧) :
diagram pullback_graph C.
Proof.
∃ (three_rec b a c).
use three_rec_dep.
- use three_rec_dep; simpl.
+ apply fromempty.
+ intro x; assumption.
+ apply fromempty.
- intro x; apply fromempty.
- use three_rec_dep; simpl.
+ apply fromempty.
+ intro x; assumption.
+ apply fromempty.
Defined.
Definition PullbCone {a b c : C} (f : C ⟦b,a⟧) (g : C⟦c,a⟧)
(d : C) (f' : C ⟦d, b⟧) (g' : C ⟦d,c⟧)
(H : f' · f = g'· g)
: cone (pullback_diagram f g) d.
Proof.
use make_cone.
- use three_rec_dep; try assumption.
apply (f' · f).
- use three_rec_dep; use three_rec_dep.
+ exact (empty_rect _ ).
+ intro x; apply idpath.
+ exact (empty_rect _ ).
+ exact (empty_rect _ ).
+ exact (empty_rect _ ).
+ exact (empty_rect _ ).
+ exact (empty_rect _ ).
+ intro x; apply (!H).
+ exact (empty_rect _ ).
Defined.
Definition isPullback {a b c d : C} (f : C ⟦b, a⟧) (g : C ⟦c, a⟧)
(p1 : C⟦d,b⟧) (p2 : C⟦d,c⟧) (H : p1 · f = p2· g) : UU :=
isLimCone (pullback_diagram f g) d (PullbCone f g d p1 p2 H).
Definition make_isPullback {a b c d : C} (f : C ⟦b, a⟧) (g : C ⟦c, a⟧)
(p1 : C⟦d,b⟧) (p2 : C⟦d,c⟧) (H : p1 · f = p2· g) :
(∏ e (h : C ⟦e, b⟧) (k : C⟦e,c⟧)(Hk : h · f = k · g ),
iscontr (total2 (fun hk : C⟦e,d⟧ ⇒ dirprod (hk · p1 = h)(hk · p2 = k))))
→
isPullback f g p1 p2 H.
Proof.
intros H' x cx; simpl in ×.
set (H1 := H' x (coneOut cx One) (coneOut cx Three) ).
use (let p : coneOut cx One · f = coneOut cx Three · g := _ in _ ).
{ eapply pathscomp0; [apply (coneOutCommutes cx One Two tt)|].
apply pathsinv0, (coneOutCommutes cx Three Two tt). }
set (H2 := H1 p).
use tpair.
+ ∃ (pr1 (pr1 H2)).
use three_rec_dep.
× apply (pr1 (pr2 (pr1 H2))).
× simpl.
change (three_rec_dep (λ n, C⟦d,_⟧) _ _ _ _) with (p1 · f).
rewrite assoc.
eapply pathscomp0.
eapply cancel_postcomposition, (pr2 (pr1 H2)).
apply (coneOutCommutes cx One Two tt).
× apply (pr2 (pr2 (pr1 H2))).
+ abstract (intro t; apply subtypePath;
[ intro; apply impred; intro; apply C
| destruct t as [t p0];
apply path_to_ctr; split; [ apply (p0 One) | apply (p0 Three) ]]).
Defined.
Definition Pullback {a b c : C} (f : C⟦b, a⟧)(g : C⟦c, a⟧) :=
LimCone (pullback_diagram f g).
Definition make_Pullback {a b c : C} (f : C⟦b, a⟧)(g : C⟦c, a⟧)
(d : C) (p1 : C⟦d,b⟧) (p2 : C ⟦d,c⟧)
(H : p1 · f = p2 · g)
(ispb : isPullback f g p1 p2 H)
: Pullback f g.
Proof.
use tpair.
- use tpair.
+ apply d.
+ use PullbCone; assumption.
- apply ispb.
Defined.
Definition Pullbacks := ∏ (a b c : C)(f : C⟦b, a⟧)(g : C⟦c, a⟧),
Pullback f g.
Definition hasPullbacks := ∏ (a b c : C) (f : C⟦b, a⟧) (g : C⟦c, a⟧),
ishinh (Pullback f g).
Definition PullbackObject {a b c : C} {f : C⟦b, a⟧} {g : C⟦c, a⟧}:
Pullback f g → C := λ H, lim H.
Definition PullbackPr1 {a b c : C} {f : C⟦b, a⟧} {g : C⟦c, a⟧}
(Pb : Pullback f g) : C⟦lim Pb, b⟧ := limOut Pb One.
Definition PullbackPr2 {a b c : C} {f : C⟦b, a⟧} {g : C⟦c, a⟧}
(Pb : Pullback f g) : C⟦lim Pb, c⟧ := limOut Pb Three.
Definition PullbackSqrCommutes {a b c : C} {f : C⟦b, a⟧} {g : C⟦c, a⟧}
(Pb : Pullback f g) :
PullbackPr1 Pb · f = PullbackPr2 Pb · g .
Proof.
eapply pathscomp0; [apply (limOutCommutes Pb One Two tt) |].
apply (!limOutCommutes Pb Three Two tt) .
Qed.
Definition PullbackArrow {a b c : C} {f : C⟦b, a⟧} {g : C⟦c, a⟧}
(Pb : Pullback f g) e (h : C⟦e, b⟧) (k : C⟦e, c⟧)(H : h · f = k · g)
: C⟦e, lim Pb⟧.
Proof.
now use limArrow; use PullbCone.
Defined.
Lemma PullbackArrow_PullbackPr1 {a b c : C} {f : C⟦b, a⟧} {g : C⟦c, a⟧}
(Pb : Pullback f g) e (h : C⟦e, b⟧) (k : C⟦e, c⟧)(H : h · f = k · g) :
PullbackArrow Pb e h k H · PullbackPr1 Pb = h.
Proof.
exact (limArrowCommutes Pb e _ One).
Qed.
Lemma PullbackArrow_PullbackPr2 {a b c : C} {f : C⟦b, a⟧} {g : C⟦c, a⟧}
(Pb : Pullback f g) e (h : C⟦e, b⟧) (k : C⟦e, c⟧)(H : h · f = k · g) :
PullbackArrow Pb e h k H · PullbackPr2 Pb = k.
Proof.
exact (limArrowCommutes Pb e _ Three).
Qed.
Lemma PullbackArrowUnique {a b c d : C} (f : C⟦b, a⟧) (g : C⟦c, a⟧)
(Pb : Pullback f g)
e (h : C⟦e, b⟧) (k : C⟦e, c⟧)
(Hcomm : h · f = k · g)
(w : C⟦e, PullbackObject Pb⟧)
(H1 : w · PullbackPr1 Pb = h) (H2 : w · PullbackPr2 Pb = k) :
w = PullbackArrow Pb _ h k Hcomm.
Proof.
apply path_to_ctr.
use three_rec_dep; try assumption.
set (X:= limOutCommutes Pb Three Two tt).
eapply pathscomp0.
eapply maponpaths, pathsinv0, X.
simpl.
rewrite assoc.
eapply pathscomp0.
apply cancel_postcomposition, H2.
apply (!Hcomm).
Qed.
Definition isPullback_Pullback {a b c : C} {f : C⟦b, a⟧}{g : C⟦c, a⟧}
(P : Pullback f g) :
isPullback f g (PullbackPr1 P) (PullbackPr2 P) (PullbackSqrCommutes P).
Proof.
apply make_isPullback.
intros e h k HK.
use tpair.
- use tpair.
+ apply (PullbackArrow P _ h k HK).
+ split.
× apply PullbackArrow_PullbackPr1.
× apply PullbackArrow_PullbackPr2.
- intro t.
apply subtypePath.
+ intro. apply isapropdirprod; apply C.
+ destruct t as [t p]. simpl.
use (PullbackArrowUnique _ _ P).
× apply e.
× apply (pr1 p).
× apply (pr2 p).
Qed.
Lemma equiv_isPullback_1 {a b c d : C} (f : C ⟦b, a⟧) (g : C ⟦c, a⟧)
(p1 : C⟦d,b⟧) (p2 : C⟦d,c⟧) (H : p1 · f = p2· g) :
limits.pullbacks.isPullback H → isPullback f g p1 p2 H.
Proof.
intro X.
intros R cc.
set (XR := limits.pullbacks.make_Pullback _ X).
use tpair.
- use tpair.
+ use (pullbacks.PullbackArrow XR).
× apply (coneOut cc One).
× apply (coneOut cc Three).
× abstract (
assert (XRT := coneOutCommutes cc Three Two tt); simpl in XRT;
eapply pathscomp0; [| apply (!XRT)]; clear XRT;
assert (XRT := coneOutCommutes cc One Two tt); simpl in XRT;
eapply pathscomp0; [| apply (XRT)]; apply idpath
).
+ use three_rec_dep.
× abstract (apply (pullbacks.PullbackArrow_PullbackPr1 XR)).
× abstract (simpl;
change (three_rec_dep (λ n, C⟦d,_⟧) _ _ _ _) with (p1 · f);
rewrite assoc;
rewrite (limits.pullbacks.PullbackArrow_PullbackPr1 XR);
assert (XRT := coneOutCommutes cc One Two tt); simpl in XRT;
eapply pathscomp0; [| apply (XRT)]; apply idpath).
× abstract (apply (limits.pullbacks.PullbackArrow_PullbackPr2 XR)).
- abstract (
intro t;
apply subtypePath;
[intro; apply impred; intro; apply C |];
simpl; destruct t as [t HH]; simpl in *;
apply limits.pullbacks.PullbackArrowUnique;
[ apply (HH One) | apply (HH Three)] ).
Qed.
Definition equiv_Pullback_1 {a b c : C} (f : C⟦b, a⟧) (g : C⟦c, a⟧) :
limits.pullbacks.Pullback f g → Pullback f g.
Proof.
intros X.
exact (make_Pullback
f g (limits.pullbacks.PullbackObject X)
(limits.pullbacks.PullbackPr1 X)
(limits.pullbacks.PullbackPr2 X)
(limits.pullbacks.PullbackSqrCommutes X)
(equiv_isPullback_1 _ _ _ _ _ (limits.pullbacks.isPullback_Pullback X))).
Defined.
Definition equiv_Pullbacks_1: @limits.pullbacks.Pullbacks C → Pullbacks.
Proof.
intros X' a b c f g.
set (X := X' a b c f g).
exact (make_Pullback
f g (limits.pullbacks.PullbackObject X)
(limits.pullbacks.PullbackPr1 X)
(limits.pullbacks.PullbackPr2 X)
(limits.pullbacks.PullbackSqrCommutes X)
(equiv_isPullback_1 _ _ _ _ _ (limits.pullbacks.isPullback_Pullback X))).
Defined.
Lemma equiv_isPullback_2 {a b c d : C} (f : C ⟦b, a⟧) (g : C ⟦c, a⟧)
(p1 : C⟦d,b⟧) (p2 : C⟦d,c⟧) (H : p1 · f = p2· g) :
limits.pullbacks.isPullback H <- isPullback f g p1 p2 H.
Proof.
intro X.
set (XR := make_Pullback _ _ _ _ _ _ X).
intros R k h HH.
use tpair.
- use tpair.
use (PullbackArrow XR); try assumption.
split.
+ apply (PullbackArrow_PullbackPr1 XR).
+ apply (PullbackArrow_PullbackPr2 XR).
- abstract (
intro t; apply subtypePath;
[ intro; apply isapropdirprod; apply C |] ;
induction t as [x Hx]; simpl in × ;
use (PullbackArrowUnique _ _ XR);
[apply R | apply (pr1 Hx) | apply (pr2 Hx) ]
).
Qed.
Definition equiv_Pullback_2 {a b c : C} (f : C⟦b, a⟧) (g : C⟦c, a⟧) :
limits.pullbacks.Pullback f g <- Pullback f g.
Proof.
intros X.
exact (limits.pullbacks.make_Pullback
(PullbackSqrCommutes X)
(equiv_isPullback_2 _ _ _ _ _ (isPullback_Pullback X))).
Defined.
Definition equiv_Pullbacks_2 : @limits.pullbacks.Pullbacks C <- Pullbacks.
Proof.
intros X' a b c f g.
set (X := X' a b c f g).
exact (limits.pullbacks.make_Pullback
(PullbackSqrCommutes X)
(equiv_isPullback_2 _ _ _ _ _ (isPullback_Pullback X))).
Defined.
Definition identity_is_Pullback_input {a b c : C}{f : C⟦b, a⟧} {g : C⟦c, a⟧} (Pb : Pullback f g) :
total2 (fun hk : C⟦lim Pb, lim Pb⟧ ⇒
dirprod (hk · PullbackPr1 Pb = PullbackPr1 Pb)(hk · PullbackPr2 Pb = PullbackPr2 Pb)).
Proof.
∃ (identity (lim Pb)).
apply make_dirprod; apply id_left.
Defined.
Lemma PullbackArrowUnique' {a b c d : C} (f : C⟦b, a⟧) (g : C⟦c, a⟧)
(p1 : C⟦d, b⟧) (p2 : C⟦d, c⟧) (H : p1 · f = p2 · g) (P : isPullback f g p1 p2 H)
(e : C) (h : C⟦e, b⟧) (k : C⟦e, c⟧) (Hcomm : h · f = k · g) (w : C⟦e, d⟧)
(H1 : w · p1 = h) (H2 : w · p2 = k) :
w = (pr1 (pr1 (P e (PullbCone f g _ h k Hcomm)))).
Proof.
apply path_to_ctr.
use three_rec_dep; try assumption; simpl.
change (three_rec_dep (λ n, C⟦d,_⟧) _ _ _ _) with (p1 · f).
change (three_rec_dep (λ n, C⟦e,_⟧) _ _ _ _) with (h · f).
now rewrite <- H1, assoc.
Qed.
Lemma PullbackEndo_is_identity {a b c : C}{f : C⟦b, a⟧} {g : C⟦c, a⟧} (Pb : Pullback f g)
(k : C⟦lim Pb, lim Pb⟧) (kH1 : k · PullbackPr1 Pb = PullbackPr1 Pb)
(kH2 : k · PullbackPr2 Pb = PullbackPr2 Pb) : identity (lim Pb) = k.
Proof.
apply lim_endo_is_identity.
use three_rec_dep.
- apply kH1.
- unfold limOut. simpl.
assert (T:= coneOutCommutes (limCone Pb) Three Two tt).
eapply pathscomp0. apply maponpaths. apply (!T).
rewrite assoc.
eapply pathscomp0. apply cancel_postcomposition.
apply kH2.
apply T.
- assumption.
Qed.
Definition from_Pullback_to_Pullback {a b c : C} {f : C⟦b, a⟧} {g : C⟦c, a⟧}
(Pb Pb': Pullback f g) : C⟦lim Pb, lim Pb'⟧.
Proof.
apply (PullbackArrow Pb' (lim Pb) (PullbackPr1 _ ) (PullbackPr2 _)).
exact (PullbackSqrCommutes _ ).
Defined.
Lemma are_inverses_from_Pullback_to_Pullback {a b c : C} {f : C⟦b, a⟧} {g : C⟦c, a⟧}
(Pb Pb': Pullback f g) :
is_inverse_in_precat (from_Pullback_to_Pullback Pb Pb') (from_Pullback_to_Pullback Pb' Pb).
Proof.
split; apply pathsinv0;
apply PullbackEndo_is_identity;
rewrite <- assoc;
unfold from_Pullback_to_Pullback;
repeat rewrite PullbackArrow_PullbackPr1;
repeat rewrite PullbackArrow_PullbackPr2;
auto.
Qed.
Lemma isiso_from_Pullback_to_Pullback {a b c : C} {f : C⟦b, a⟧} {g : C⟦c, a⟧}
(Pb Pb': Pullback f g) : is_iso (from_Pullback_to_Pullback Pb Pb').
Proof.
apply (is_iso_qinv _ (from_Pullback_to_Pullback Pb' Pb)).
apply are_inverses_from_Pullback_to_Pullback.
Defined.
Definition iso_from_Pullback_to_Pullback {a b c : C} {f : C⟦b, a⟧} {g : C⟦c, a⟧}
(Pb Pb': Pullback f g) : iso (lim Pb) (lim Pb') :=
tpair _ _ (isiso_from_Pullback_to_Pullback Pb Pb').
pullback lemma
Section pullback_lemma.
Variables a b c d e x : C.
Variables (f : C⟦b, a⟧) (g : C⟦c, a⟧) (h : C⟦e, b⟧) (k : C⟦e, c⟧)
(i : C⟦d, b⟧) (j : C⟦x, e⟧) (m : C⟦x, d⟧).
Hypothesis H1 : h · f = k · g.
Hypothesis H2 : m · i = j · h.
Hypothesis P1 : isPullback _ _ _ _ H1.
Hypothesis P2 : isPullback _ _ _ _ H2.
Lemma glueSquares : m · (i · f) = (j · k) · g.
Proof.
rewrite assoc.
rewrite H2.
repeat rewrite <- assoc.
rewrite H1.
apply idpath.
Qed.
End pullback_lemma.
Lemma inv_from_iso_iso_from_Pullback (a b c : C) (f : C⟦b, a⟧) (g : C⟦c, a⟧)
(Pb : Pullback f g) (Pb' : Pullback f g):
inv_from_iso (iso_from_Pullback_to_Pullback Pb Pb') = from_Pullback_to_Pullback Pb' Pb.
Proof.
apply pathsinv0.
apply inv_iso_unique'.
set (T:= are_inverses_from_Pullback_to_Pullback Pb Pb').
apply (pr1 T).
Qed.
End def_pb.
Lemma Pullbacks_from_Lims (C : category) :
Lims C → Pullbacks C.
Proof.
intros H a b c f g; apply H.
Defined.