Library UniMath.CategoryTheory.limits.equalizers
- Definition
- Proof that the equalizer arrow is monic (EqualizerArrowisMonic)
- Alternative universal property
Require Import UniMath.Foundations.PartD.
Require Import UniMath.Foundations.Propositions.
Require Import UniMath.Foundations.Sets.
Require Import UniMath.CategoryTheory.Core.Categories.
Require Import UniMath.CategoryTheory.Core.Isos.
Local Open Scope cat.
Require Import UniMath.CategoryTheory.Monics.
Require Import UniMath.Foundations.Propositions.
Require Import UniMath.Foundations.Sets.
Require Import UniMath.CategoryTheory.Core.Categories.
Require Import UniMath.CategoryTheory.Core.Isos.
Local Open Scope cat.
Require Import UniMath.CategoryTheory.Monics.
Definition and construction of isEqualizer.
Definition isEqualizer {x y z : C} (f g : y --> z) (e : x --> y)
(H : e · f = e · g) : UU :=
∏ (w : C) (h : w --> y) (H : h · f = h · g),
∃! φ : w --> x, φ · e = h.
Definition make_isEqualizer {x y z : C} (f g : y --> z) (e : x --> y)
(H : e · f = e · g) :
(∏ (w : C) (h : w --> y) (H' : h · f = h · g),
∃! ψ : w --> x, ψ · e = h) → isEqualizer f g e H.
Proof.
intros X. unfold isEqualizer. exact X.
Defined.
Lemma isaprop_isEqualizer {x y z : C} (f g : y --> z) (e : x --> y)
(H : e · f = e · g) :
isaprop (isEqualizer f g e H).
Proof.
repeat (apply impred; intro).
apply isapropiscontr.
Defined.
Lemma isEqualizer_path {hs : has_homsets C} {x y z : C} {f g : y --> z} {e : x --> y}
{H H' : e · f = e · g} (iC : isEqualizer f g e H) :
isEqualizer f g e H'.
Proof.
use make_isEqualizer.
intros w0 h H'0.
use unique_exists.
- exact (pr1 (pr1 (iC w0 h H'0))).
- exact (pr2 (pr1 (iC w0 h H'0))).
- intros y0. apply hs.
- intros y0 X. exact (base_paths _ _ (pr2 (iC w0 h H'0) (tpair _ y0 X))).
Defined.
(H : e · f = e · g) : UU :=
∏ (w : C) (h : w --> y) (H : h · f = h · g),
∃! φ : w --> x, φ · e = h.
Definition make_isEqualizer {x y z : C} (f g : y --> z) (e : x --> y)
(H : e · f = e · g) :
(∏ (w : C) (h : w --> y) (H' : h · f = h · g),
∃! ψ : w --> x, ψ · e = h) → isEqualizer f g e H.
Proof.
intros X. unfold isEqualizer. exact X.
Defined.
Lemma isaprop_isEqualizer {x y z : C} (f g : y --> z) (e : x --> y)
(H : e · f = e · g) :
isaprop (isEqualizer f g e H).
Proof.
repeat (apply impred; intro).
apply isapropiscontr.
Defined.
Lemma isEqualizer_path {hs : has_homsets C} {x y z : C} {f g : y --> z} {e : x --> y}
{H H' : e · f = e · g} (iC : isEqualizer f g e H) :
isEqualizer f g e H'.
Proof.
use make_isEqualizer.
intros w0 h H'0.
use unique_exists.
- exact (pr1 (pr1 (iC w0 h H'0))).
- exact (pr2 (pr1 (iC w0 h H'0))).
- intros y0. apply hs.
- intros y0 X. exact (base_paths _ _ (pr2 (iC w0 h H'0) (tpair _ y0 X))).
Defined.
Proves that the arrow to the equalizer object with the right
commutativity property is unique.
Lemma isEqualizerInUnique {x y z : C} (f g : y --> z) (e : x --> y)
(H : e · f = e · g) (E : isEqualizer f g e H)
(w : C) (h : w --> y) (H' : h · f = h · g)
(φ : w --> x) (H'' : φ · e = h) :
φ = (pr1 (pr1 (E w h H'))).
Proof.
set (T := tpair (fun ψ : w --> x ⇒ ψ · e = h) φ H'').
set (T' := pr2 (E w h H') T).
apply (base_paths _ _ T').
Defined.
(H : e · f = e · g) (E : isEqualizer f g e H)
(w : C) (h : w --> y) (H' : h · f = h · g)
(φ : w --> x) (H'' : φ · e = h) :
φ = (pr1 (pr1 (E w h H'))).
Proof.
set (T := tpair (fun ψ : w --> x ⇒ ψ · e = h) φ H'').
set (T' := pr2 (E w h H') T).
apply (base_paths _ _ T').
Defined.
Definition and construction of equalizers.
Definition Equalizer {y z : C} (f g : y --> z) : UU :=
∑ e : (∑ w : C, w --> y),
(∑ H : (pr2 e) · f = (pr2 e) · g, isEqualizer f g (pr2 e) H).
Definition make_Equalizer {x y z : C} (f g : y --> z) (e : x --> y)
(H : e · f = e · g) (isE : isEqualizer f g e H) :
Equalizer f g.
Proof.
use tpair.
- use tpair.
+ apply x.
+ apply e.
- simpl. exact (tpair _ H isE).
Defined.
∑ e : (∑ w : C, w --> y),
(∑ H : (pr2 e) · f = (pr2 e) · g, isEqualizer f g (pr2 e) H).
Definition make_Equalizer {x y z : C} (f g : y --> z) (e : x --> y)
(H : e · f = e · g) (isE : isEqualizer f g e H) :
Equalizer f g.
Proof.
use tpair.
- use tpair.
+ apply x.
+ apply e.
- simpl. exact (tpair _ H isE).
Defined.
Equalizers in precategories.
Definition Equalizers : UU := ∏ (y z : C) (f g : y --> z), Equalizer f g.
Definition hasEqualizers : UU := ∏ (y z : C) (f g : y --> z),
ishinh (Equalizer f g).
Definition hasEqualizers : UU := ∏ (y z : C) (f g : y --> z),
ishinh (Equalizer f g).
Returns the equalizer object.
Definition EqualizerObject {y z : C} {f g : y --> z} (E : Equalizer f g) :
C := pr1 (pr1 E).
Coercion EqualizerObject : Equalizer >-> ob.
C := pr1 (pr1 E).
Coercion EqualizerObject : Equalizer >-> ob.
Returns the equalizer arrow.
The equality on morphisms that equalizers must satisfy.
Definition EqualizerEqAr {y z : C} {f g : y --> z} (E : Equalizer f g) :
EqualizerArrow E · f = EqualizerArrow E · g := pr1 (pr2 E).
EqualizerArrow E · f = EqualizerArrow E · g := pr1 (pr2 E).
Returns the property isEqualizer from Equalizer.
Definition isEqualizer_Equalizer {y z : C} {f g : y --> z}
(E : Equalizer f g) :
isEqualizer f g (EqualizerArrow E) (EqualizerEqAr E) := pr2 (pr2 E).
(E : Equalizer f g) :
isEqualizer f g (EqualizerArrow E) (EqualizerEqAr E) := pr2 (pr2 E).
Every morphism which satisfy the equalizer equality on morphism factors
uniquely through the EqualizerArrow.
Definition EqualizerIn {y z : C} {f g : y --> z} (E : Equalizer f g)
(w : C) (h : w --> y) (H : h · f = h · g) :
C⟦w, E⟧ := pr1 (pr1 (isEqualizer_Equalizer E w h H)).
Lemma EqualizerCommutes {y z : C} {f g : y --> z} (E : Equalizer f g)
(w : C) (h : w --> y) (H : h · f = h · g) :
(EqualizerIn E w h H) · (EqualizerArrow E) = h.
Proof.
exact (pr2 (pr1 ((isEqualizer_Equalizer E) w h H))).
Defined.
Lemma isEqualizerInsEq {x y z: C} {f g : y --> z} {e : x --> y}
{H : e · f = e · g} (E : isEqualizer f g e H)
{w : C} (φ1 φ2: w --> x) (H' : φ1 · e = φ2 · e) : φ1 = φ2.
Proof.
assert (H'1 : φ1 · e · f = φ1 · e · g).
rewrite <- assoc. rewrite H. rewrite assoc. apply idpath.
set (E' := make_Equalizer _ _ _ _ E).
set (E'ar := EqualizerIn E' w (φ1 · e) H'1).
intermediate_path E'ar.
apply isEqualizerInUnique. apply idpath.
apply pathsinv0. apply isEqualizerInUnique. apply pathsinv0. apply H'.
Defined.
Lemma EqualizerInsEq {y z: C} {f g : y --> z} (E : Equalizer f g)
{w : C} (φ1 φ2: C⟦w, E⟧)
(H' : φ1 · (EqualizerArrow E) = φ2 · (EqualizerArrow E)) : φ1 = φ2.
Proof.
apply (isEqualizerInsEq (isEqualizer_Equalizer E) _ _ H').
Defined.
Lemma EqualizerInComp {y z : C} {f g : y --> z} (E : Equalizer f g) {x x' : C}
(h1 : x --> x') (h2 : x' --> y)
(H1 : h1 · h2 · f = h1 · h2 · g) (H2 : h2 · f = h2 · g) :
EqualizerIn E x (h1 · h2) H1 = h1 · EqualizerIn E x' h2 H2.
Proof.
use EqualizerInsEq. rewrite EqualizerCommutes.
rewrite <- assoc. rewrite EqualizerCommutes.
apply idpath.
Qed.
(w : C) (h : w --> y) (H : h · f = h · g) :
C⟦w, E⟧ := pr1 (pr1 (isEqualizer_Equalizer E w h H)).
Lemma EqualizerCommutes {y z : C} {f g : y --> z} (E : Equalizer f g)
(w : C) (h : w --> y) (H : h · f = h · g) :
(EqualizerIn E w h H) · (EqualizerArrow E) = h.
Proof.
exact (pr2 (pr1 ((isEqualizer_Equalizer E) w h H))).
Defined.
Lemma isEqualizerInsEq {x y z: C} {f g : y --> z} {e : x --> y}
{H : e · f = e · g} (E : isEqualizer f g e H)
{w : C} (φ1 φ2: w --> x) (H' : φ1 · e = φ2 · e) : φ1 = φ2.
Proof.
assert (H'1 : φ1 · e · f = φ1 · e · g).
rewrite <- assoc. rewrite H. rewrite assoc. apply idpath.
set (E' := make_Equalizer _ _ _ _ E).
set (E'ar := EqualizerIn E' w (φ1 · e) H'1).
intermediate_path E'ar.
apply isEqualizerInUnique. apply idpath.
apply pathsinv0. apply isEqualizerInUnique. apply pathsinv0. apply H'.
Defined.
Lemma EqualizerInsEq {y z: C} {f g : y --> z} (E : Equalizer f g)
{w : C} (φ1 φ2: C⟦w, E⟧)
(H' : φ1 · (EqualizerArrow E) = φ2 · (EqualizerArrow E)) : φ1 = φ2.
Proof.
apply (isEqualizerInsEq (isEqualizer_Equalizer E) _ _ H').
Defined.
Lemma EqualizerInComp {y z : C} {f g : y --> z} (E : Equalizer f g) {x x' : C}
(h1 : x --> x') (h2 : x' --> y)
(H1 : h1 · h2 · f = h1 · h2 · g) (H2 : h2 · f = h2 · g) :
EqualizerIn E x (h1 · h2) H1 = h1 · EqualizerIn E x' h2 H2.
Proof.
use EqualizerInsEq. rewrite EqualizerCommutes.
rewrite <- assoc. rewrite EqualizerCommutes.
apply idpath.
Qed.
Morphisms between equalizer objects with the right commutativity
equalities.
Definition identity_is_EqualizerIn {y z : C} {f g : y --> z}
(E : Equalizer f g) :
∑ φ : C⟦E, E⟧, φ · (EqualizerArrow E) = (EqualizerArrow E).
Proof.
∃ (identity E).
apply id_left.
Defined.
Lemma EqualizerEndo_is_identity {y z : C} {f g : y --> z} {E : Equalizer f g}
(φ : C⟦E, E⟧) (H : φ · (EqualizerArrow E) = EqualizerArrow E) :
identity E = φ.
Proof.
set (H1 := tpair ((fun φ' : C⟦E, E⟧ ⇒ φ' · _ = _)) φ H).
assert (H2 : identity_is_EqualizerIn E = H1).
- apply proofirrelevancecontr.
apply (isEqualizer_Equalizer E).
apply EqualizerEqAr.
- apply (base_paths _ _ H2).
Defined.
Definition from_Equalizer_to_Equalizer {y z : C} {f g : y --> z}
(E E': Equalizer f g) : C⟦E, E'⟧.
Proof.
apply (EqualizerIn E' E (EqualizerArrow E)).
apply EqualizerEqAr.
Defined.
Lemma are_inverses_from_Equalizer_to_Equalizer {y z : C} {f g : y --> z}
{E E': Equalizer f g} :
is_inverse_in_precat (from_Equalizer_to_Equalizer E E')
(from_Equalizer_to_Equalizer E' E).
Proof.
split; apply pathsinv0; use EqualizerEndo_is_identity;
rewrite <- assoc; unfold from_Equalizer_to_Equalizer;
repeat rewrite EqualizerCommutes; apply idpath.
Defined.
Lemma isiso_from_Equalizer_to_Equalizer {y z : C} {f g : y --> z}
(E E' : Equalizer f g) :
is_iso (from_Equalizer_to_Equalizer E E').
Proof.
apply (is_iso_qinv _ (from_Equalizer_to_Equalizer E' E)).
apply are_inverses_from_Equalizer_to_Equalizer.
Defined.
Definition iso_from_Equalizer_to_Equalizer {y z : C} {f g : y --> z}
(E E' : Equalizer f g) : iso E E' :=
tpair _ _ (isiso_from_Equalizer_to_Equalizer E E').
Lemma z_iso_from_Equalizer_to_Equalizer_inverses {y z : C} {f g : y --> z}
(E E' : Equalizer f g) :
is_inverse_in_precat (from_Equalizer_to_Equalizer E E') (from_Equalizer_to_Equalizer E' E).
Proof.
use make_is_inverse_in_precat.
- apply pathsinv0. use EqualizerEndo_is_identity.
rewrite <- assoc. unfold from_Equalizer_to_Equalizer. rewrite EqualizerCommutes.
rewrite EqualizerCommutes. apply idpath.
- apply pathsinv0. use EqualizerEndo_is_identity.
rewrite <- assoc. unfold from_Equalizer_to_Equalizer. rewrite EqualizerCommutes.
rewrite EqualizerCommutes. apply idpath.
Qed.
Definition z_iso_from_Equalizer_to_Equalizer {y z : C} {f g : y --> z}
(E E' : Equalizer f g) : z_iso E E'.
Proof.
use make_z_iso.
- exact (from_Equalizer_to_Equalizer E E').
- exact (from_Equalizer_to_Equalizer E' E).
- exact (z_iso_from_Equalizer_to_Equalizer_inverses E E').
Defined.
(E : Equalizer f g) :
∑ φ : C⟦E, E⟧, φ · (EqualizerArrow E) = (EqualizerArrow E).
Proof.
∃ (identity E).
apply id_left.
Defined.
Lemma EqualizerEndo_is_identity {y z : C} {f g : y --> z} {E : Equalizer f g}
(φ : C⟦E, E⟧) (H : φ · (EqualizerArrow E) = EqualizerArrow E) :
identity E = φ.
Proof.
set (H1 := tpair ((fun φ' : C⟦E, E⟧ ⇒ φ' · _ = _)) φ H).
assert (H2 : identity_is_EqualizerIn E = H1).
- apply proofirrelevancecontr.
apply (isEqualizer_Equalizer E).
apply EqualizerEqAr.
- apply (base_paths _ _ H2).
Defined.
Definition from_Equalizer_to_Equalizer {y z : C} {f g : y --> z}
(E E': Equalizer f g) : C⟦E, E'⟧.
Proof.
apply (EqualizerIn E' E (EqualizerArrow E)).
apply EqualizerEqAr.
Defined.
Lemma are_inverses_from_Equalizer_to_Equalizer {y z : C} {f g : y --> z}
{E E': Equalizer f g} :
is_inverse_in_precat (from_Equalizer_to_Equalizer E E')
(from_Equalizer_to_Equalizer E' E).
Proof.
split; apply pathsinv0; use EqualizerEndo_is_identity;
rewrite <- assoc; unfold from_Equalizer_to_Equalizer;
repeat rewrite EqualizerCommutes; apply idpath.
Defined.
Lemma isiso_from_Equalizer_to_Equalizer {y z : C} {f g : y --> z}
(E E' : Equalizer f g) :
is_iso (from_Equalizer_to_Equalizer E E').
Proof.
apply (is_iso_qinv _ (from_Equalizer_to_Equalizer E' E)).
apply are_inverses_from_Equalizer_to_Equalizer.
Defined.
Definition iso_from_Equalizer_to_Equalizer {y z : C} {f g : y --> z}
(E E' : Equalizer f g) : iso E E' :=
tpair _ _ (isiso_from_Equalizer_to_Equalizer E E').
Lemma z_iso_from_Equalizer_to_Equalizer_inverses {y z : C} {f g : y --> z}
(E E' : Equalizer f g) :
is_inverse_in_precat (from_Equalizer_to_Equalizer E E') (from_Equalizer_to_Equalizer E' E).
Proof.
use make_is_inverse_in_precat.
- apply pathsinv0. use EqualizerEndo_is_identity.
rewrite <- assoc. unfold from_Equalizer_to_Equalizer. rewrite EqualizerCommutes.
rewrite EqualizerCommutes. apply idpath.
- apply pathsinv0. use EqualizerEndo_is_identity.
rewrite <- assoc. unfold from_Equalizer_to_Equalizer. rewrite EqualizerCommutes.
rewrite EqualizerCommutes. apply idpath.
Qed.
Definition z_iso_from_Equalizer_to_Equalizer {y z : C} {f g : y --> z}
(E E' : Equalizer f g) : z_iso E E'.
Proof.
use make_z_iso.
- exact (from_Equalizer_to_Equalizer E E').
- exact (from_Equalizer_to_Equalizer E' E).
- exact (z_iso_from_Equalizer_to_Equalizer_inverses E E').
Defined.
Proof that the equalizer arrow is monic (EqualizerArrowisMonic)
Lemma EqualizerArrowisMonic {y z : C} {f g : y --> z} (E : Equalizer f g ) :
isMonic (EqualizerArrow E).
Proof.
apply make_isMonic.
intros z0 g0 h X.
apply (EqualizerInsEq E).
apply X.
Qed.
Lemma EqualizerArrowMonic {y z : C} {f g : y --> z} (E : Equalizer f g ) :
Monic _ E y.
Proof.
exact (make_Monic C (EqualizerArrow E) (EqualizerArrowisMonic E)).
Defined.
End def_equalizers.
isMonic (EqualizerArrow E).
Proof.
apply make_isMonic.
intros z0 g0 h X.
apply (EqualizerInsEq E).
apply X.
Qed.
Lemma EqualizerArrowMonic {y z : C} {f g : y --> z} (E : Equalizer f g ) :
Monic _ E y.
Proof.
exact (make_Monic C (EqualizerArrow E) (EqualizerArrowisMonic E)).
Defined.
End def_equalizers.
Make the C not implicit for Equalizers
Section Equalizers'.
Context {C : category} {c d : ob C} (f g : C⟦c, d⟧).
Context (E : ob C) (h : E --> c) (H : h · f = h · g).
A map into an equalizer can be turned into a map into c
such that its composites with f and g are equal.
Definition postcomp_with_equalizer_mor (a : ob C) (j : a --> E) :
∑ (k : a --> c), (k · f = k · g).
Proof.
∃ (j · h).
refine (!assoc _ _ _ @ _).
refine (_ @ assoc _ _ _).
apply maponpaths.
assumption.
Defined.
Definition isEqualizer' : UU :=
∏ (a : ob C), isweq (postcomp_with_equalizer_mor a).
Definition isEqualizer'_weq (is : isEqualizer') :
∏ a, (a --> E) ≃ (∑ k : a --> c, (k · f = k · g)) :=
λ a, make_weq (postcomp_with_equalizer_mor a) (is a).
Lemma isaprop_isEqualizer' : isaprop isEqualizer'.
Proof.
unfold isEqualizer'.
apply impred; intro.
apply isapropisweq.
Qed.
∑ (k : a --> c), (k · f = k · g).
Proof.
∃ (j · h).
refine (!assoc _ _ _ @ _).
refine (_ @ assoc _ _ _).
apply maponpaths.
assumption.
Defined.
Definition isEqualizer' : UU :=
∏ (a : ob C), isweq (postcomp_with_equalizer_mor a).
Definition isEqualizer'_weq (is : isEqualizer') :
∏ a, (a --> E) ≃ (∑ k : a --> c, (k · f = k · g)) :=
λ a, make_weq (postcomp_with_equalizer_mor a) (is a).
Lemma isaprop_isEqualizer' : isaprop isEqualizer'.
Proof.
unfold isEqualizer'.
apply impred; intro.
apply isapropisweq.
Qed.
Can isEqualizer'_to_isEqualizer be generalized to arbitrary precategories?
Compare to isBinProduct'_to_isBinProduct.
Lemma isEqualizer'_to_isEqualizer :
isEqualizer' → isEqualizer f g h H.
Proof.
intros isEq' E' h' H'.
apply (@iscontrweqf (hfiber (isEqualizer'_weq isEq' _) (h',, H'))).
- cbn; unfold hfiber.
use weqfibtototal; intros j; cbn.
unfold postcomp_with_equalizer_mor.
apply subtypeInjectivity.
intro; apply C.
- apply weqproperty.
Defined.
Lemma isEqualizer_to_isEqualizer' :
isEqualizer f g h H → isEqualizer'.
Proof.
intros isEq E'.
unfold postcomp_with_equalizer_mor.
unfold isweq, hfiber.
intros hH'.
apply (@iscontrweqf (∑ u : C ⟦ E', E ⟧, u · h = pr1 hH')).
- use weqfibtototal; intro; cbn.
apply invweq.
use subtypeInjectivity.
intro; apply C.
- exact (isEq E' (pr1 hH') (pr2 hH')).
Defined.
Lemma isEqualizer'_weq_isEqualizer :
isEqualizer f g h H ≃ isEqualizer'.
Proof.
apply weqimplimpl.
- apply isEqualizer_to_isEqualizer'; assumption.
- apply isEqualizer'_to_isEqualizer; assumption.
- apply isaprop_isEqualizer.
- apply isaprop_isEqualizer'.
Qed.
End Equalizers'.
isEqualizer' → isEqualizer f g h H.
Proof.
intros isEq' E' h' H'.
apply (@iscontrweqf (hfiber (isEqualizer'_weq isEq' _) (h',, H'))).
- cbn; unfold hfiber.
use weqfibtototal; intros j; cbn.
unfold postcomp_with_equalizer_mor.
apply subtypeInjectivity.
intro; apply C.
- apply weqproperty.
Defined.
Lemma isEqualizer_to_isEqualizer' :
isEqualizer f g h H → isEqualizer'.
Proof.
intros isEq E'.
unfold postcomp_with_equalizer_mor.
unfold isweq, hfiber.
intros hH'.
apply (@iscontrweqf (∑ u : C ⟦ E', E ⟧, u · h = pr1 hH')).
- use weqfibtototal; intro; cbn.
apply invweq.
use subtypeInjectivity.
intro; apply C.
- exact (isEq E' (pr1 hH') (pr2 hH')).
Defined.
Lemma isEqualizer'_weq_isEqualizer :
isEqualizer f g h H ≃ isEqualizer'.
Proof.
apply weqimplimpl.
- apply isEqualizer_to_isEqualizer'; assumption.
- apply isEqualizer'_to_isEqualizer; assumption.
- apply isaprop_isEqualizer.
- apply isaprop_isEqualizer'.
Qed.
End Equalizers'.