Library UniMath.CategoryTheory.categories.Cats
The (pre)category of (pre)categories
Contents:
- Definitions
- The precategory of 𝒰-small precategories (for fixed U) (precat_precat)
- The precategory of 𝒰-small categories (cat_precat)
- The precategory of 𝒰-small univalent categories (univalent_cat_precat)
- The category of 𝒰-small set categories (setcat_cat)
- Colimits
- Initial objects
- Initial precategory (InitialPrecat)
- Initial category (InitialCat)
- Initial univalent category (InitialUniCat)
- Initial objects
- Limits
- Terminal objects
- Terminal precategory (TerminalPrecat)
- Terminal category (TerminalCat)
- Terminal univalent category (TerminalUniCat)
- Terminal setcategory (TerminalSetCat)
- Products
- Product category (ProductsCat)
- Notes on equalizers
- Terminal objects
Require Import UniMath.Foundations.PartA.
Require Import UniMath.Foundations.Sets.
Require Import UniMath.MoreFoundations.PartA.
Require Import UniMath.CategoryTheory.Core.Categories.
Require Import UniMath.CategoryTheory.Core.Setcategories.
Require Import UniMath.CategoryTheory.Core.Univalence.
Require Import UniMath.CategoryTheory.Core.Functors.
Require Import UniMath.CategoryTheory.whiskering.
Require Import UniMath.CategoryTheory.catiso.
Require Import UniMath.CategoryTheory.Subcategory.Core.
Require Import UniMath.CategoryTheory.Subcategory.Full.
Require Import UniMath.CategoryTheory.Subcategory.Limits.
Require Import UniMath.CategoryTheory.categories.StandardCategories. Require Import UniMath.CategoryTheory.limits.initial.
Require Import UniMath.CategoryTheory.limits.terminal.
Require Import UniMath.CategoryTheory.limits.products.
Require Import UniMath.CategoryTheory.ProductCategory.
Local Open Scope cat.
Local Open Scope functions.
Definition precat_precat : precategory.
Proof.
use make_precategory_one_assoc.
- use tpair; use tpair; cbn.
+ exact precategory.
+ exact functor.
+ exact functor_identity.
+ exact @functor_composite.
- repeat split; intros.
+ apply functor_identity_right.
+ apply pathsinv0, functor_assoc.
Defined.
Definition cat_precat_subtype : hsubtype precat_precat :=
λ C : precategory, make_hProp _ (isaprop_has_homsets C).
It's not the case that cat_precat has homsets.
The precategory of 𝒰-small univalent categories (univalent_cat_precat)
This can also be seen as a subcategory of cat_precat.
An isommorphism between them would be useful because it is easier to prove
e.g. that cat_precat has products, and then inherit them in
univalent_cat_precat.
Two copies of a proposition are as good as one.
This is like the structural rule of contraction.
Local Lemma dirprod_with_prop (A : UU) (isa : isaprop A) : A × A ≃ A.
Proof.
apply weqpr1, iscontraprop1; assumption.
Defined.
Proof.
apply weqpr1, iscontraprop1; assumption.
Defined.
A variation on the above theme
Local Lemma dirprod_with_prop' (A B : UU) (isa : isaprop A) : A × B × A ≃ B × A.
Proof.
intermediate_weq ((A × B) × A).
apply invweq, weqtotal2asstor.
intermediate_weq (A × (A × B)).
apply weqdirprodcomm.
intermediate_weq ((A × A) × B).
apply invweq, weqtotal2asstor.
intermediate_weq (A × B).
apply weqdirprodf.
- apply dirprod_with_prop; assumption.
- apply idweq.
- apply weqdirprodcomm.
Defined.
Proof.
intermediate_weq ((A × B) × A).
apply invweq, weqtotal2asstor.
intermediate_weq (A × (A × B)).
apply weqdirprodcomm.
intermediate_weq ((A × A) × B).
apply invweq, weqtotal2asstor.
intermediate_weq (A × B).
apply weqdirprodf.
- apply dirprod_with_prop; assumption.
- apply idweq.
- apply weqdirprodcomm.
Defined.