Library UniMath.CategoryTheory.categories.Cats

The (pre)category of (pre)categories

This file defines the (pre)category of 𝒰-small (pre)categories, i.e. (pre)categories that fit within some fixed universe.
Author: Langston Barrett (@siddharthist), Feb 2018

Contents:

  • Definitions
    • The precategory of 𝒰-small precategories (for fixed U) (precat_precat)
    • The precategory of 𝒰-small categories (cat_precat)
    • The precategory of 𝒰-small univalent categories (univalent_cat_precat)
    • The category of 𝒰-small set categories (setcat_cat)
  • Colimits
    • Initial objects
      • Initial precategory (InitialPrecat)
      • Initial category (InitialCat)
      • Initial univalent category (InitialUniCat)
  • Limits
    • Terminal objects
      • Terminal precategory (TerminalPrecat)
      • Terminal category (TerminalCat)
      • Terminal univalent category (TerminalUniCat)
      • Terminal setcategory (TerminalSetCat)
    • Products
      • Product category (ProductsCat)
    • Notes on equalizers

Definitions

The precategory of 𝒰-small precategories (for fixed 𝒰) (precat_precat)


Definition precat_precat : precategory.
Proof.
  use make_precategory_one_assoc.
  - use tpair; use tpair; cbn.
    + exact precategory.
    + exact functor.
    + exact functor_identity.
    + exact @functor_composite.
  - repeat split; intros.
    + apply functor_identity_right.
    + apply pathsinv0, functor_assoc.
Defined.

The precategory of 𝒰-small categories (cat_precat)

It's not the case that cat_precat has homsets.

The precategory of 𝒰-small univalent categories (univalent_cat_precat)


This can also be seen as a subcategory of cat_precat. An isommorphism between them would be useful because it is easier to prove e.g. that cat_precat has products, and then inherit them in univalent_cat_precat.
Two copies of a proposition are as good as one. This is like the structural rule of contraction.
Local Lemma dirprod_with_prop (A : UU) (isa : isaprop A) : A × A A.
Proof.
  apply weqpr1, iscontraprop1; assumption.
Defined.

A variation on the above theme
Local Lemma dirprod_with_prop' (A B : UU) (isa : isaprop A) : A × B × A B × A.
Proof.
  intermediate_weq ((A × B) × A).
  apply invweq, weqtotal2asstor.
  intermediate_weq (A × (A × B)).
  apply weqdirprodcomm.
  intermediate_weq ((A × A) × B).
  apply invweq, weqtotal2asstor.
  intermediate_weq (A × B).
  apply weqdirprodf.
  - apply dirprod_with_prop; assumption.
  - apply idweq.
  - apply weqdirprodcomm.
Defined.


The category of 𝒰-small set categories (setcat_cat)

The precategory of 𝒰-small categories with objects of hlevel n and homtypes

of hlevel m.

Setcategories, the case where n = m = 2.