Library UniMath.CategoryTheory.DisplayedCats.Adjunctions
Contents:
Written by Tamara von Glehn and Noam Zeilberger at the School and Workshop on
Univalent Mathematics, December 2017
- Definition of homset correspondences for a displayed adjunction.
- Homset correspondences are weak equivalences.
- The right adjoint functor of a displayed adjunction preserves cartesian morphisms.
Require Import UniMath.Foundations.Sets.
Require Import UniMath.MoreFoundations.PartA.
Require Import UniMath.CategoryTheory.Core.Categories.
Require Import UniMath.CategoryTheory.Core.Functors.
Require Import UniMath.CategoryTheory.Core.NaturalTransformations.
Require Import UniMath.CategoryTheory.Adjunctions.Core.
Require Import UniMath.CategoryTheory.Equivalences.Core.
Local Open Scope cat.
Require Import UniMath.CategoryTheory.DisplayedCats.Auxiliary.
Require Import UniMath.CategoryTheory.DisplayedCats.Core.
Require Import UniMath.CategoryTheory.DisplayedCats.Constructions.
Require Import UniMath.CategoryTheory.DisplayedCats.Fibrations.
Require Import UniMath.CategoryTheory.DisplayedCats.Equivalences.
Section fix_disp_adjunction.
Context {C C' : category}
(A : adjunction C C')
{D : disp_cat C}
{D': disp_cat C'}
(X : disp_adjunction A D D').
Let F := left_functor A.
Let G := right_functor A.
Let FF : disp_functor F D D' := left_adj_over X.
Let GG : disp_functor G D' D := right_adj_over X.
Let η : functor_identity C ⟹ F ∙ G := adjunit A.
Let ε : G ∙ F ⟹ functor_identity C' := adjcounit A.
Let ηη : disp_nat_trans η (disp_functor_identity D) (disp_functor_composite FF GG)
:= unit_over X.
Let εε : disp_nat_trans ε (disp_functor_composite GG FF) (disp_functor_identity D')
:= counit_over X.
Local Open Scope hide_transport_scope.
Section DispHomSetIso_from_Adjunction.
Definition homset_conj_inv {c : C} {c' : C'} (g : C⟦c, G c'⟧) (d : D c) (d' : D' c') :
(d -->[g] GG _ d') → (FF _ d -->[#F g · ε _] d') :=
λ alpha, comp_disp (# FF alpha) (εε _ _).
Definition homset_conj' {c : C} {c' : C'} (f : C'⟦F c, c'⟧) (d : D c) (d' : D' c') :
(FF _ d -->[f] d') → (d -->[η _ · #G f] GG _ d') :=
λ beta, comp_disp (ηη _ _) (# GG beta).
Definition homset_conj'_inv {c : C} {c' : C'} (f : C'⟦F c, c'⟧) (d : D c) (d' : D' c') :
(d -->[η _ · #G f] GG _ d') → (FF _ d -->[f] d').
Proof.
set (equiv := φ_adj_inv_after_φ_adj A f
: # F (η c · # G f) · ε c' = f).
exact (λ alpha, transportf _ equiv (homset_conj_inv _ _ _ alpha)).
Defined.
Definition homset_conj {c : C} {c' : C'} (g : C⟦c, G c'⟧) (d : D c) (d' : D' c') :
(FF _ d -->[#F g · ε _] d') → (d -->[g] GG _ d').
Proof.
set (equiv := φ_adj_after_φ_adj_inv A g
: η c · # G (# F g · ε c') = g).
exact (λ beta, transportf _ equiv (homset_conj' _ _ _ beta)).
Defined.
Open Scope mor_disp.
Lemma homset_conj_inv_natural_precomp {c : C} {c' : C'} {g : C⟦c, G c'⟧} {c'' : C}
{f : C⟦c'', c⟧} {d : D c} {d' : D' c'} {d'' : D c''}
(gg : d -->[g] GG _ d') (ff : d'' -->[f] d) :
homset_conj_inv _ _ _ (ff ;; gg) =
transportb _ (φ_adj_inv_natural_precomp A _ _ g _ f) (# FF ff ;; homset_conj_inv _ _ _ gg).
Proof.
unfold homset_conj_inv.
rewrite disp_functor_comp.
rewrite assoc_disp.
unfold transportb.
rewrite mor_disp_transportf_postwhisker.
rewrite transport_f_f.
apply maponpaths_2, homset_property.
Defined.
Lemma homset_conj_inv_natural_postcomp {c : C} {c' : C'} {g : C⟦c, G c'⟧} {c'' : C'}
{f : C'⟦c', c''⟧} {d : D c} {d' : D' c'} {d'' : D' c''}
(gg : d -->[g] GG _ d') (ff : d' -->[f] d'') :
homset_conj_inv _ _ _ (gg ;; # GG ff) =
transportb _ (φ_adj_inv_natural_postcomp A _ _ g _ f) (homset_conj_inv _ _ _ gg ;; ff).
Proof.
unfold homset_conj_inv.
rewrite disp_functor_comp.
unfold transportb.
rewrite mor_disp_transportf_postwhisker.
rewrite 2 assoc_disp_var.
cbn.
set (nat_εε := disp_nat_trans_ax εε ff).
cbn in nat_εε. rewrite nat_εε.
unfold transportb.
rewrite mor_disp_transportf_prewhisker.
rewrite 3 transport_f_f.
apply maponpaths_2, homset_property.
Defined.
Lemma homset_conj'_natural_precomp {c : C} {c' : C'} {f : C'⟦F c, c'⟧} {c'' : C}
{k : C⟦c'', c⟧} {d : D c} {d' : D' c'} {d'' : D c''}
(ff : FF _ d -->[f] d') (kk : d'' -->[k] d) :
homset_conj' _ _ _ (# FF kk ;; ff) =
transportb _ (φ_adj_natural_precomp A _ _ f _ k) (kk ;; homset_conj' _ _ _ ff).
Proof.
unfold homset_conj'.
rewrite disp_functor_comp.
unfold transportb.
rewrite mor_disp_transportf_prewhisker.
rewrite 2 assoc_disp.
cbn.
set (nat_ηη := disp_nat_trans_ax_var ηη kk).
cbn in nat_ηη. rewrite nat_ηη.
unfold transportb.
rewrite mor_disp_transportf_postwhisker.
rewrite 3 transport_f_f.
apply maponpaths_2, homset_property.
Defined.
Lemma homset_conj'_natural_postcomp {c : C} {c' : C'} {f : C'⟦F c, c'⟧} {c'' : C'}
{k : C'⟦c', c''⟧} {d : D c} {d' : D' c'} {d'' : D' c''}
(ff : FF _ d -->[f] d') (kk : d' -->[k] d'') :
homset_conj' _ _ _ (ff ;; kk) =
transportb _ (φ_adj_natural_postcomp A _ _ f _ k) (homset_conj' _ _ _ ff ;; # GG kk).
Proof.
unfold homset_conj'.
rewrite disp_functor_comp.
rewrite assoc_disp_var.
unfold transportb.
rewrite mor_disp_transportf_prewhisker.
rewrite transport_f_f.
apply maponpaths_2, homset_property.
Defined.
Lemma homset_conj_inv_after_conj' {c : C} {c' : C'} (f : C'⟦F c, c'⟧)(d : D c) (d' : D' c')
(beta : FF _ d -->[f] d') :
transportf _ (φ_adj_inv_after_φ_adj A f)
(homset_conj_inv _ _ _ (homset_conj' f d d' beta)) = beta.
Proof.
unfold homset_conj'.
cbn.
set (eq := homset_conj_inv_natural_postcomp (ηη c d) beta).
cbn in eq. rewrite eq.
unfold homset_conj_inv.
cbn.
rewrite transport_f_b.
assert (triangle1 : # FF (ηη c d);; εε (F c) (FF c d) =
transportb _ (triangle_id_left_ad A c ) (id_disp _))
by (exact ((pr1 (pr2 X)) c d)).
cbn in triangle1.
rewrite triangle1.
unfold transportb.
rewrite mor_disp_transportf_postwhisker.
rewrite id_left_disp.
unfold transportb.
rewrite 2 transport_f_f.
intermediate_path (transportf _ (idpath _) beta).
- apply maponpaths_2, homset_property.
- apply idpath.
Defined.
Lemma homset_conj'_after_conj_inv {c : C} {c' : C'} {g : C⟦c, G c'⟧} {d : D c} (d' : D' c')
(alpha : d -->[g] GG _ d') :
transportf _ (φ_adj_after_φ_adj_inv A g)
(homset_conj' _ _ _ (homset_conj_inv g d d' alpha)) = alpha.
unfold homset_conj_inv.
cbn.
set (eq := homset_conj'_natural_precomp (εε c' d') alpha).
cbn in eq. rewrite eq.
unfold homset_conj'.
cbn.
rewrite transport_f_b.
assert (triangle2 : (ηη (G c') (GG c' d');; # GG (εε c' d')) =
transportb _ (triangle_id_right_ad A c') (id_disp _)) by (exact (pr2 (pr2 X) c' d')).
cbn in triangle2.
rewrite triangle2.
unfold transportb.
rewrite mor_disp_transportf_prewhisker.
rewrite id_right_disp.
unfold transportb.
rewrite 2 transport_f_f.
intermediate_path (transportf _ (idpath _ ) alpha).
- apply maponpaths_2, homset_property.
- apply idpath.
Defined.
Close Scope mor_disp.
Lemma homset_conj_after_conj_inv {c : C} {c' : C'} {g : C⟦c, G c'⟧} {d : D c} (d' : D' c')
(alpha : d -->[g] GG _ d') :
homset_conj _ _ _ (homset_conj_inv _ _ _ alpha) = alpha.
Proof.
apply homset_conj'_after_conj_inv.
Defined.
Lemma homset_conj_inv_after_conj {c : C} {c' : C'} {g : C⟦c, G c'⟧} (d : D c) {d' : D' c'}
(beta : FF _ d -->[#F g · ε _] d') :
homset_conj_inv _ _ _ (homset_conj _ _ _ beta) = beta.
Proof.
unfold homset_conj.
rewrite <- homset_conj_inv_after_conj'.
unfold homset_conj_inv.
rewrite disp_functor_transportf.
rewrite mor_disp_transportf_postwhisker.
apply maponpaths_2, homset_property.
Defined.
Lemma homset_conj'_inv_after_conj' {c : C} {c' : C'} (f : C'⟦F c, c'⟧)(d : D c) (d' : D' c')
(beta : FF _ d -->[f] d') :
homset_conj'_inv _ _ _ (homset_conj' _ _ _ beta) = beta.
Proof.
apply homset_conj_inv_after_conj'.
Defined.
Lemma homset_conj'_after_conj'_inv {c : C} {c' : C'} (f : C'⟦F c, c'⟧) (d : D c) (d' : D' c')
(alpha : d -->[η _ · #G f] GG _ d') :
homset_conj' _ _ _ (homset_conj'_inv _ _ _ alpha) = alpha.
Proof.
unfold homset_conj', homset_conj'_inv.
rewrite disp_functor_transportf.
rewrite mor_disp_transportf_prewhisker.
rewrite <- homset_conj'_after_conj_inv.
apply maponpaths_2, homset_property.
Defined.
Lemma dispadjunction_hom_weq (c : C) (c' : C') (g : C⟦c, G c'⟧) (d : D c) (d' : D' c') :
(d -->[g] GG _ d') ≃ (FF _ d -->[# F g · ε _] d').
Proof.
∃ (homset_conj_inv _ _ _).
apply (gradth _ (homset_conj _ _ _)).
- apply homset_conj_after_conj_inv.
- apply homset_conj_inv_after_conj.
Defined.
Lemma dispadjunction_hom_weq' (c : C) (c' : C') (f : C'⟦F c, c'⟧) (d : D c) (d' : D' c') :
(FF _ d -->[f] d') ≃ (d -->[η _ · # G f] GG _ d').
Proof.
∃ (homset_conj' _ _ _).
apply (gradth _ (homset_conj'_inv _ _ _)).
- apply homset_conj'_inv_after_conj'.
- apply homset_conj'_after_conj'_inv.
Defined.
End DispHomSetIso_from_Adjunction.
Lemma right_over_adj_preserves_cartesianness : is_cartesian_disp_functor GG.
Proof.
unfold is_cartesian_disp_functor.
intros c c' f d d' ff ff_cart.
intros c'' g d'' h.
set (eq := φ_adj_inv_natural_postcomp A _ _ g _ f
: # F (g · # G f) · ε c = # F g · (ε c') · f).
Open Scope mor_disp.
apply (@iscontrweqb _ (∑ gg, (gg;; ff) = transportf _ eq (homset_conj_inv _ _ _ h))).
- apply (weqbandf (dispadjunction_hom_weq _ _ g _ _)).
intro gg.
cbn.
set (eq2 := homset_conj_inv_natural_postcomp gg ff).
cbn in eq2.
apply weqimplimpl.
+ intro p.
rewrite <- p.
rewrite eq2.
rewrite transport_f_b.
intermediate_path (transportf _ (idpath _ ) (# FF gg;; εε c' d';; ff)).
× apply idpath.
× apply maponpaths_2, homset_property.
+ intro p.
set (equiv1 := homset_conj'_after_conj_inv _ h).
set (equiv2 := homset_conj'_after_conj_inv _ (gg;; # GG ff)).
unfold homset_conj' in equiv1, equiv2.
rewrite <- equiv1.
rewrite <- equiv2.
rewrite eq2.
rewrite p.
rewrite transport_b_f.
rewrite disp_functor_transportf.
rewrite mor_disp_transportf_prewhisker.
rewrite transport_f_f.
apply maponpaths_2, homset_property.
+ apply homsets_disp.
+ apply homsets_disp.
- apply ff_cart.
Defined.
End fix_disp_adjunction.