Library UniMath.CategoryTheory.CATAsInstanceOfBicat

use constructions and results for bicategories for the instance of the bicategory of (small) categories (with homsets, but without univalence)
Author: Ralph Matthes 2021

Require Import UniMath.Foundations.PartD.
Require Import UniMath.MoreFoundations.All.
Require Import UniMath.CategoryTheory.Core.Categories.
Require Import UniMath.CategoryTheory.Core.Functors.
Require Import UniMath.CategoryTheory.Core.Isos.
Require Import UniMath.CategoryTheory.Core.NaturalTransformations.
Require Import UniMath.CategoryTheory.PrecategoryBinProduct.
Require Import UniMath.CategoryTheory.FunctorCategory.
Require Import UniMath.CategoryTheory.whiskering.
Require Import UniMath.CategoryTheory.HorizontalComposition.
Require Import UniMath.Bicategories.Core.Bicat.
Require Import UniMath.Bicategories.Core.Examples.BicatOfCats.

Import Bicat.Notations.

Local Open Scope cat.

Local Definition CAT : bicat := bicat_of_cats.

Local Definition lwhisker := @lwhisker CAT.

Local Lemma pre_whisker_as_lwhisker (A B C: category) (F: A B)(G H: B C)(γ: G H):
  pre_whisker F γ = lwhisker A B C F G H γ.
Proof.
  apply idpath.
Qed.

Local Definition rwhisker := @rwhisker CAT.

Local Lemma post_whisker_as_rwhisker (B C D: category) (G H: B C) (γ: G H) (K: C D):
  post_whisker γ K = rwhisker B C D G H K γ.
Proof.
  apply idpath.
Qed.

Local Definition hcomp := @hcomp CAT.
Local Definition hcomp' := @hcomp' CAT.

demonstrates the mismatch: horcomp only corresponds to hcomp'
Local Lemma horcomp_as_hcomp'_pointwise (C D E : category) (F F' : C D) (G G' : D E) (α : F F') (β: G G'):
  horcomp α β = hcomp' C D E F F' G G' α β.
Proof.
  apply (nat_trans_eq (homset_property E)).
  intro c.
  apply idpath.
Qed.

Local Definition hcomp_functor_data := @hcomp_functor_data CAT.
Local Definition hcomp_functor := @hcomp_functor CAT.

no more mismatch when using functorial_composition
as a corollary:
here, we obtain the result by inheriting from the abstract bicategorical development