Library UniMath.Bicategories.DisplayedBicats.DispPseudofunctor
Displayed pseudofunctors.
Marco Maggesi, Niccolò Veltri, Niels van der Weide
July 2019
Contents:
- Definition of displayed pseudofunctors.
- Identity and composition of displayed pseudofunctors.
Require Import UniMath.Foundations.All.
Require Import UniMath.MoreFoundations.All.
Require Import UniMath.CategoryTheory.Core.Categories.
Require Import UniMath.CategoryTheory.Core.Functors.
Require Import UniMath.CategoryTheory.DisplayedCats.Auxiliary.
Require Import UniMath.CategoryTheory.DisplayedCats.Core.
Require Import UniMath.CategoryTheory.DisplayedCats.Constructions.
Require Import UniMath.Bicategories.Core.Bicat. Import Bicat.Notations.
Require Import UniMath.Bicategories.Core.Examples.Initial.
Require Import UniMath.Bicategories.Core.Examples.Final.
Require Import UniMath.Bicategories.DisplayedBicats.DispBicat. Import DispBicat.Notations.
Require Import UniMath.Bicategories.Core.Univalence.
Require Import UniMath.Bicategories.Core.Invertible_2cells.
Require Import UniMath.Bicategories.DisplayedBicats.DispInvertibles.
Require Import UniMath.Bicategories.DisplayedBicats.DispAdjunctions.
Require Import UniMath.Bicategories.DisplayedBicats.DispUnivalence.
Require Import UniMath.Bicategories.DisplayedBicats.Fibration.
Require Import UniMath.Bicategories.DisplayedBicats.FiberCategory.
Require Import UniMath.Bicategories.PseudoFunctors.Display.PseudoFunctorBicat.
Require Import UniMath.Bicategories.PseudoFunctors.PseudoFunctor.
Require Import UniMath.Bicategories.PseudoFunctors.Examples.Identity.
Require Import UniMath.Bicategories.PseudoFunctors.Examples.Composition.
Import PseudoFunctor.Notations.
Local Open Scope cat.
Section DispPseudofunctor.
Context {B₁ : bicat} (D₁ : disp_bicat B₁)
{B₂ : bicat} (D₂ : disp_bicat B₂)
(F : psfunctor B₁ B₂).
Definition disp_psfunctor_data : UU
:=
∑ (obFF : ∏ x:B₁, D₁ x → D₂ (F x))
(morFF : ∏ (x y : B₁) (f : B₁⟦x,y⟧) (xx : D₁ x) (yy : D₁ y),
(xx -->[f] yy) →
(obFF x xx -->[#F f] obFF y yy))
(cellFF : ∏ (x y : B₁) (f g : B₁⟦x,y⟧) (α : f ==> g) (xx : D₁ x) (yy : D₁ y)
(ff : xx -->[f] yy) (gg : xx -->[g] yy),
(ff ==>[α] gg) → (morFF x y f xx yy ff ==>[##F α] morFF x y g xx yy gg))
(disp_psfunctor_id : ∏ (x : B₁) (xx : D₁ x),
disp_invertible_2cell
(psfunctor_id F x)
(id_disp (obFF x xx))
(morFF x x (id₁ x) xx xx (id_disp xx))),
(∏ (x y z : B₁) (f : x --> y) (g : y --> z)
(xx : D₁ x) (yy : D₁ y) (zz : D₁ z)
(ff : xx -->[f] yy) (gg : yy -->[g] zz),
disp_invertible_2cell
(psfunctor_comp F f g)
(comp_disp (morFF x y f xx yy ff) (morFF y z g yy zz gg))
(morFF x z (f · g) xx zz (comp_disp ff gg))).
Definition make_disp_psfunctor_data
(obFF : ∏ x:B₁, D₁ x → D₂ (F x))
(morFF : ∏ (x y : B₁) (f : B₁⟦x,y⟧) (xx : D₁ x) (yy : D₁ y),
(xx -->[f] yy) →
(obFF x xx -->[#F f] obFF y yy))
(cellFF : ∏ (x y : B₁) (f g : B₁⟦x,y⟧) (α : f ==> g) (xx : D₁ x) (yy : D₁ y)
(ff : xx -->[f] yy) (gg : xx -->[g] yy),
(ff ==>[α] gg) → (morFF x y f xx yy ff ==>[##F α] morFF x y g xx yy gg))
(disp_psfunctor_id : ∏ (x : B₁) (xx : D₁ x),
disp_invertible_2cell
(psfunctor_id F x)
(id_disp (obFF x xx))
(morFF x x (id₁ x) xx xx (id_disp xx)))
(disp_psfunctor_comp : ∏ (x y z : B₁) (f : x --> y) (g : y --> z)
(xx : D₁ x) (yy : D₁ y) (zz : D₁ z)
(ff : xx -->[f] yy) (gg : yy -->[g] zz),
disp_invertible_2cell
(psfunctor_comp F f g)
(comp_disp (morFF x y f xx yy ff) (morFF y z g yy zz gg))
(morFF x z (f · g) xx zz (comp_disp ff gg)))
: disp_psfunctor_data
:= (obFF,, morFF,, cellFF,, disp_psfunctor_id,, disp_psfunctor_comp).
Definition disp_psfunctor_ob (FFdata : disp_psfunctor_data)
{x : B₁}
(xx : D₁ x)
: D₂ (F x)
:= pr1 FFdata x xx.
Coercion disp_psfunctor_ob : disp_psfunctor_data >-> Funclass.
Section Projections.
Variable (FFdata : disp_psfunctor_data).
Definition disp_psfunctor_mor
{x y : B₁} {f : B₁⟦x,y⟧} {xx : D₁ x} {yy : D₁ y}
(ff : xx -->[f] yy)
: FFdata x xx -->[#F f] FFdata y yy
:= pr12 FFdata x y f xx yy ff.
Definition disp_psfunctor_cell {x y : B₁} {f g : B₁⟦x,y⟧} {α : f ==> g}
{xx : D₁ x} {yy : D₁ y}
{ff : xx -->[f] yy} {gg : xx -->[g] yy}
(αα : ff ==>[α] gg)
: disp_psfunctor_mor ff ==>[##F α] disp_psfunctor_mor gg
:= pr122 FFdata x y f g α xx yy ff gg αα.
Definition disp_psfunctor_id {x : B₁} (xx : D₁ x)
: disp_invertible_2cell (psfunctor_id F x)
(id_disp (FFdata x xx))
(disp_psfunctor_mor (id_disp xx))
:= pr122 (pr2 FFdata) x xx.
Definition disp_psfunctor_comp
{x y z : B₁} {f : x --> y} {g : y --> z}
{xx : D₁ x} {yy : D₁ y} {zz : D₁ z}
(ff : xx -->[f] yy) (gg : yy -->[g] zz)
: disp_invertible_2cell (psfunctor_comp F f g)
(comp_disp (disp_psfunctor_mor ff) (disp_psfunctor_mor gg))
(disp_psfunctor_mor (comp_disp ff gg))
:= pr222 (pr2 FFdata) x y z f g xx yy zz ff gg.
End Projections.
Definition total_psfunctor_data (FFdata : disp_psfunctor_data)
: psfunctor_data (total_bicat D₁) (total_bicat D₂).
Proof.
use make_psfunctor_data.
- exact (λ x, (F (pr1 x),, FFdata _ (pr2 x))).
- exact (λ x y f, (#F (pr1 f) ,, disp_psfunctor_mor FFdata (pr2 f))).
- exact (λ x y f g α, (##F (pr1 α),, disp_psfunctor_cell FFdata (pr2 α))).
- exact (λ x, iso_in_E_weq _ _ (psfunctor_id F (pr1 x),, disp_psfunctor_id FFdata (pr2 x))).
- refine (λ x y z f g, iso_in_E_weq _ _ _).
exact (psfunctor_comp F (pr1 f) (pr1 g),, disp_psfunctor_comp FFdata (pr2 f) (pr2 g)).
Defined.
Section DispPseudofunctorLaws.
Variable FFdata : disp_psfunctor_data.
Definition disp_psfunctor_id2_law
: UU
:= ∏ (a b : B₁) (f : a --> b)
(aa : D₁ a)
(bb : D₁ b)
(ff : aa -->[f] bb),
disp_psfunctor_cell FFdata (disp_id2 ff) =
transportb
(λ p : # F f ==> # F f, disp_psfunctor_mor FFdata ff ==>[p] disp_psfunctor_mor FFdata ff)
(psfunctor_id2 F f) (disp_id2 (disp_psfunctor_mor FFdata ff)).
Definition disp_psfunctor_vcomp2_law : UU
:= ∏ (a b : B₁) (f g h : B₁ ⟦a, b⟧) (η : f ==> g) (φ : g ==> h) (aa : D₁ a)
(bb : D₁ b) (ff : aa -->[f] bb) (gg : aa -->[g] bb) (hh : aa -->[h] bb)
(ηη : ff ==>[η] gg) (φφ : gg ==>[φ] hh),
disp_psfunctor_cell FFdata (ηη •• φφ) =
transportb
(λ p : # F f ==> # F h, disp_psfunctor_mor FFdata ff ==>[ p] disp_psfunctor_mor FFdata hh)
(psfunctor_vcomp F η φ) (disp_psfunctor_cell FFdata ηη •• disp_psfunctor_cell FFdata φφ).
Definition disp_psfunctor_lunitor_law : UU
:= ∏ (a b : B₁) (f : B₁ ⟦ a, b ⟧) (aa : D₁ a) (bb : D₁ b) (ff : aa -->[ f] bb),
disp_lunitor (disp_psfunctor_mor FFdata ff) =
transportb
(λ p, _ ==>[p] _)
(psfunctor_lunitor F f)
(((disp_psfunctor_id FFdata aa ▹▹ disp_psfunctor_mor FFdata ff)
•• disp_psfunctor_comp FFdata (id_disp aa) ff)
•• disp_psfunctor_cell FFdata (disp_lunitor ff)).
Definition disp_psfunctor_runitor_law : UU
:= ∏ (a b : B₁) (f : B₁ ⟦ a, b ⟧) (aa : D₁ a) (bb : D₁ b) (ff : aa -->[ f] bb),
disp_runitor (disp_psfunctor_mor FFdata ff) =
transportb
(λ p, _ ==>[p] _)
(psfunctor_runitor F f)
(((disp_psfunctor_mor FFdata ff ◃◃ disp_psfunctor_id FFdata _)
•• disp_psfunctor_comp FFdata _ _)
•• disp_psfunctor_cell FFdata (disp_runitor ff)).
Definition disp_psfunctor_lassociator_law : UU
:=
∏ (a b c d : B₁) (f : B₁ ⟦ a, b ⟧) (g : B₁ ⟦ b, c ⟧) (h : B₁ ⟦ c, d ⟧)
(aa : D₁ a) (bb : D₁ b) (cc : D₁ c) (dd : D₁ d) (ff : aa -->[ f] bb) (gg : bb -->[ g] cc)
(hh : cc -->[ h] dd),
((disp_psfunctor_mor FFdata ff ◃◃ disp_psfunctor_comp FFdata gg hh)
•• disp_psfunctor_comp FFdata ff (gg;; hh))
•• disp_psfunctor_cell FFdata (disp_lassociator ff gg hh) =
transportb
(λ p, _ ==>[p] _)
(psfunctor_lassociator F f g h)
((disp_lassociator (disp_psfunctor_mor FFdata ff) (disp_psfunctor_mor FFdata gg)
(disp_psfunctor_mor FFdata hh)
•• (disp_psfunctor_comp FFdata ff gg ▹▹ disp_psfunctor_mor FFdata hh))
•• disp_psfunctor_comp FFdata (ff;; gg) hh).
Definition disp_psfunctor_lwhisker_law : UU
:= ∏ (a b c : B₁) (f : B₁ ⟦ a, b ⟧) (g₁ g₂ : B₁ ⟦ b, c ⟧) (η : g₁ ==> g₂)
(aa : D₁ a) (bb : D₁ b) (cc : D₁ c) (ff : aa -->[ f] bb) (gg₁ : bb -->[ g₁] cc)
(gg₂ : bb -->[ g₂] cc) (ηη : gg₁ ==>[ η] gg₂),
disp_psfunctor_comp FFdata ff gg₁ •• disp_psfunctor_cell FFdata (ff ◃◃ ηη) =
transportb
(λ p, _ ==>[p] _)
(psfunctor_lwhisker F f η)
((disp_psfunctor_mor FFdata ff ◃◃ disp_psfunctor_cell FFdata ηη)
•• disp_psfunctor_comp FFdata ff gg₂).
Definition disp_psfunctor_rwhisker_law : UU
:= ∏ (a b c : B₁) (f₁ f₂ : B₁ ⟦ a, b ⟧) (g : B₁ ⟦ b, c ⟧) (η : f₁ ==> f₂)
(aa : D₁ a) (bb : D₁ b) (cc : D₁ c)
(ff₁ : aa -->[f₁] bb)
(ff₂ : aa -->[f₂] bb)
(gg : bb -->[g] cc)
(ηη : ff₁ ==>[ η] ff₂),
disp_psfunctor_comp FFdata _ _ •• disp_psfunctor_cell FFdata (ηη ▹▹ gg) =
transportb
(λ p, _ ==>[p] _)
(psfunctor_rwhisker F g η)
((disp_psfunctor_cell FFdata ηη ▹▹ _)
•• disp_psfunctor_comp FFdata _ _).
Definition is_disp_psfunctor : UU
:= disp_psfunctor_id2_law
× disp_psfunctor_vcomp2_law
× disp_psfunctor_lunitor_law
× disp_psfunctor_runitor_law
× disp_psfunctor_lassociator_law
× disp_psfunctor_lwhisker_law
× disp_psfunctor_rwhisker_law.
Definition disp_psfunctor_id2 (H : is_disp_psfunctor) := pr1 H.
Definition disp_psfunctor_vcomp2 (H : is_disp_psfunctor) := pr12 H.
Definition disp_psfunctor_vcomp2_alt (H : is_disp_psfunctor)
(a b : B₁) (f g h : B₁ ⟦a, b⟧) (η : f ==> g) (φ : g ==> h) (aa : D₁ a)
(bb : D₁ b) (ff : aa -->[f] bb) (gg : aa -->[g] bb) (hh : aa -->[h] bb)
(ηη : ff ==>[η] gg) (φφ : gg ==>[φ] hh)
: transportf
(λ p : # F f ==> # F h, disp_psfunctor_mor FFdata ff ==>[ p] disp_psfunctor_mor FFdata hh)
(psfunctor_vcomp F η φ)
(disp_psfunctor_cell FFdata (ηη •• φφ)) =
disp_psfunctor_cell FFdata ηη •• disp_psfunctor_cell FFdata φφ.
Proof.
refine (transportf_transpose_left (P := λ p, _ ==>[p] _) _).
apply (disp_psfunctor_vcomp2 H).
Qed.
End DispPseudofunctorLaws.
Definition disp_psfunctor : UU
:= ∑ FF : disp_psfunctor_data, is_disp_psfunctor FF.
Coercion disp_psfunctor_to_disp_psfunctor_data (FF : disp_psfunctor)
: disp_psfunctor_data
:= pr1 FF.
Lemma total_psfunctor_laws (FF : disp_psfunctor)
: psfunctor_laws (total_psfunctor_data FF).
Proof.
repeat apply make_dirprod; intro; intros; (use total2_paths_b; [ apply F | apply FF ]).
Qed.
Definition total_psfunctor (FF : disp_psfunctor)
: psfunctor (total_bicat D₁) (total_bicat D₂).
Proof.
use make_psfunctor.
- exact (total_psfunctor_data FF).
- exact (total_psfunctor_laws FF).
- split; intros; use iso_in_E_weq.
Defined.
Definition is_disp_psfunctor_from_total (FF : disp_psfunctor_data)
: is_psfunctor (total_psfunctor_data FF) → is_disp_psfunctor FF.
Proof.
intros HFF.
pose (EF := make_psfunctor _ (pr1 HFF) (pr2 HFF)).
repeat split.
- intros a b f aa bb ff.
pose (P := !fiber_paths (@psfunctor_id2 _ _ EF (a,,aa) (b,,bb) (f,,ff))).
symmetry.
etrans. { apply maponpaths. exact P. }
unfold transportb.
rewrite transport_f_f.
rewrite transportf_set.
× apply idpath.
× apply B₂.
- intros a b f g h η φ aa bb ff gg hh ηη φφ.
pose (P := !fiber_paths (@psfunctor_vcomp _ _ EF
(a,,aa) (b,,bb) (f,,ff) (g,,gg) (h,,hh)
(η,,ηη) (φ,,φφ))).
cbn in P; rewrite P.
unfold transportb.
rewrite transport_f_f.
rewrite transportf_set.
× apply idpath.
× apply B₂.
- intros a b f aa bb ff.
pose (P := !fiber_paths (@psfunctor_lunitor _ _
EF (a,,aa) (b,,bb) (f,,ff))).
symmetry.
etrans. { apply maponpaths. exact P. }
unfold transportb.
rewrite transport_f_f.
rewrite transportf_set.
× apply idpath.
× apply B₂.
- intros a b f aa bb ff.
pose (P := !fiber_paths (@psfunctor_runitor _ _
EF (a,,aa) (b,,bb) (f,,ff))).
symmetry.
etrans. { apply maponpaths. exact P. }
unfold transportb.
rewrite transport_f_f.
rewrite transportf_set.
× apply idpath.
× apply B₂.
- intros a b c d f g h aa bb cc dd ff gg hh.
pose (P := !fiber_paths (@psfunctor_lassociator _ _
EF (a,,aa) (b,,bb) (c,,cc) (d,,dd)
(f,,ff) (g,,gg) (h,,hh))).
symmetry.
etrans. { apply maponpaths. exact P. }
unfold transportb.
rewrite transport_f_f.
rewrite transportf_set.
× apply idpath.
× apply B₂.
- intros a b c f g1 g2 η aa bb cc ff gg1 gg2 ηη.
pose (P := !fiber_paths (@psfunctor_lwhisker _ _
EF (a,,aa) (b,,bb) (c,,cc)
(f,,ff) (g1,,gg1) (g2,,gg2) (η,,ηη))).
symmetry.
etrans. { apply maponpaths. exact P. }
unfold transportb.
rewrite transport_f_f.
rewrite transportf_set.
× apply idpath.
× apply B₂.
- intros a b c f1 f2 g η aa bb cc ff1 ff2 gg ηη.
pose (P := !fiber_paths (@psfunctor_rwhisker _ _ EF (a,,aa) (b,,bb) (c,,cc)
(f1,,ff1) (f2,,ff2) (g,,gg) (η,,ηη))).
symmetry.
etrans. { apply maponpaths. exact P. }
unfold transportb.
rewrite transport_f_f.
rewrite transportf_set.
× apply idpath.
× apply B₂.
Qed.
End DispPseudofunctor.
Section DispPseudofunctor_identity.
Context {B : bicat} (D : disp_bicat B).
Definition disp_pseudo_id_data : disp_psfunctor_data D D (id_psfunctor B).
Proof.
use make_disp_psfunctor_data; cbn.
- exact (λ _ y, y).
- exact (λ _ _ _ _ _ ff, ff).
- exact (λ _ _ _ _ _ _ _ _ _ αα, αα).
- intros. apply disp_id2_invertible_2cell.
- intros. apply disp_id2_invertible_2cell.
Defined.
Lemma disp_pseudo_id_laws : is_disp_psfunctor D D _ disp_pseudo_id_data.
Proof.
apply is_disp_psfunctor_from_total.
apply id_psfunctor.
Qed.
Definition disp_pseudo_id : disp_psfunctor D D (id_psfunctor B)
:= disp_pseudo_id_data,, disp_pseudo_id_laws.
End DispPseudofunctor_identity.
Definition disp_psfunctor_cell_transportb
{B₁ B₂ : bicat}
{F : psfunctor B₁ B₂}
{D₁ : disp_bicat B₁}
{D₂ : disp_bicat B₂}
(FF : disp_psfunctor D₁ D₂ F)
{x y : B₁}
{f : x --> y}
{φ ψ : f ==> f}
{xx : D₁ x}
{yy : D₁ y}
{ff : xx -->[f] yy}
(p : φ = ψ)
(ψψ : ff ==>[ ψ ] ff)
: disp_psfunctor_cell
_ _ _ (pr1 FF)
(transportb (λ z, ff ==>[ z ] ff) p ψψ)
=
transportb
(λ z, _ ==>[ z ] _)
(maponpaths (λ z, ##F z) p)
(disp_psfunctor_cell
_ _ _ (pr1 FF)
ψψ).
Proof.
induction p.
cbn.
apply idpath.
Defined.
Section DispPseudofunctorInvertible_2cell.
Context {B₁ B₂ : bicat}
{F : psfunctor B₁ B₂}
{D₁ : disp_bicat B₁}
{D₂ : disp_bicat B₂}
(FF : disp_psfunctor D₁ D₂ F)
{x y : B₁}
{f g : x --> y}
{α : invertible_2cell f g}
{xx : D₁ x}
{yy : D₁ y}
{ff : xx -->[f] yy}
{gg : xx -->[g] yy}
(αα : disp_invertible_2cell α ff gg).
Definition disp_psfunctor_invertible_2cell
: disp_invertible_2cell
(_,, psfunctor_is_iso F α)
(disp_psfunctor_mor _ _ _ FF ff)
(disp_psfunctor_mor _ _ _ FF gg).
Proof.
repeat use tpair; cbn.
- exact (disp_psfunctor_cell _ _ _ FF αα).
- exact (disp_psfunctor_cell _ _ _ FF (disp_inv_cell αα)).
- abstract
(rewrite <- (disp_psfunctor_vcomp2_alt _ _ _ _ (pr2 FF));
rewrite disp_vcomp_rinv;
rewrite disp_psfunctor_cell_transportb;
unfold transportb;
rewrite transport_f_f;
rewrite (disp_psfunctor_id2 _ _ _ _ (pr2 FF));
unfold transportb;
rewrite transport_f_f;
apply (@transportf_paths _ (λ p, _ ==>[ p ] _));
apply B₂).
- abstract
(rewrite <- (disp_psfunctor_vcomp2_alt _ _ _ _ (pr2 FF));
rewrite disp_vcomp_linv;
rewrite disp_psfunctor_cell_transportb;
unfold transportb;
rewrite transport_f_f;
rewrite (disp_psfunctor_id2 _ _ _ _ (pr2 FF));
unfold transportb;
rewrite transport_f_f;
apply (@transportf_paths _ (λ p, _ ==>[ p ] _));
apply B₂).
Defined.
End DispPseudofunctorInvertible_2cell.
Section DispPseudofunctor_comp.
Context {B₁ B₂ B₃ : bicat}
(F₁ : psfunctor B₁ B₂)
(F₂ : psfunctor B₂ B₃)
(D₁ : disp_bicat B₁)
(D₂ : disp_bicat B₂)
(D₃ : disp_bicat B₃)
(FF₁ : disp_psfunctor D₁ D₂ F₁)
(FF₂ : disp_psfunctor D₂ D₃ F₂).
Definition disp_pseudo_comp_data : disp_psfunctor_data D₁ D₃ (comp_psfunctor F₂ F₁).
Proof.
use make_disp_psfunctor_data; cbn.
- exact (λ x xx, FF₂ _ (FF₁ _ xx)).
- exact (λ x y f xx yy ff, disp_psfunctor_mor _ _ _ FF₂ (disp_psfunctor_mor _ _ _ FF₁ ff)).
- exact (λ x y f g α xx yy ff gg αα, disp_psfunctor_cell _ _ _ FF₂ (disp_psfunctor_cell _ _ _ FF₁ αα)).
- intros x xx.
exact (vcomp_disp_invertible
(disp_psfunctor_id _ _ _ FF₂ (FF₁ _ xx))
(disp_psfunctor_invertible_2cell FF₂ (disp_psfunctor_id _ _ _ FF₁ xx))).
- intros x y z f g xx yy zz ff gg.
exact (vcomp_disp_invertible
(disp_psfunctor_comp _ _ _ FF₂
(disp_psfunctor_mor _ _ _ FF₁ ff)
(disp_psfunctor_mor _ _ _ FF₁ gg))
(disp_psfunctor_invertible_2cell FF₂ (disp_psfunctor_comp _ _ _ FF₁ ff gg))).
Defined.
Lemma disp_pseudo_comp_laws : is_disp_psfunctor _ _ _ disp_pseudo_comp_data.
Proof.
apply is_disp_psfunctor_from_total.
apply (comp_psfunctor (total_psfunctor _ _ _ FF₂) (total_psfunctor _ _ _ FF₁)).
Qed.
Definition disp_pseudo_comp : disp_psfunctor _ _ (comp_psfunctor F₂ F₁)
:= disp_pseudo_comp_data,, disp_pseudo_comp_laws.
End DispPseudofunctor_comp.
Fiber of a pseudofunctor
Local Open Scope mor_disp_scope.
Definition transportb_disp_psfunctor
{C : bicat}
(HC : is_univalent_2_1 C)
(D₁ : disp_bicat C)
(D₂ : disp_bicat C)
(F : disp_psfunctor D₁ D₂ (id_psfunctor C))
{x y : C}
{f g : x --> y}
{xx : D₁ x} {yy : D₁ y}
(ff : xx -->[ f ] yy)
(p : g = f)
: transportb
(mor_disp ((pr11 F) x xx) ((pr11 F) y yy)) p
((pr121 F) _ _ _ xx yy ff)
=
(pr121 F)
x y g xx yy
(transportb (mor_disp xx yy) p ff).
Proof.
induction p.
apply idpath.
Defined.
Section FiberOfFunctor.
Context {C : bicat}
(HC : is_univalent_2_1 C)
{D₁ : disp_bicat C}
(HD₁ : disp_2cells_isaprop D₁)
(HD₁_2_1 : disp_univalent_2_1 D₁)
(h₁ : local_iso_cleaving D₁)
{D₂ : disp_bicat C}
(HD₂ : disp_2cells_isaprop D₂)
(HD₂_2_1 : disp_univalent_2_1 D₂)
(h₂ : local_iso_cleaving D₂)
(F : disp_psfunctor D₁ D₂ (id_psfunctor C)).
Definition fiber_functor_data
(c : C)
: functor_data
(discrete_fiber_category D₁ HD₁ HD₁_2_1 h₁ c)
(discrete_fiber_category D₂ HD₂ HD₂_2_1 h₂ c).
Proof.
use make_functor_data.
- exact (pr11 F c).
- exact (pr121 F c c (id₁ c)).
Defined.
Definition fiber_is_functor
(c : C)
: is_functor (fiber_functor_data c).
Proof.
split.
- intros x.
exact (!(disp_isotoid_2_1 _ HD₂_2_1 (idpath _) _ _ (pr12 (pr221 F) c x))).
- intros x y z f g ; cbn.
pose ((disp_isotoid_2_1
_
HD₂_2_1 (idpath _)
_ _
(pr22 (pr221 F) c c c (id₁ c) (id₁ c) x y z f g))) as p.
cbn in p.
rewrite p ; clear p.
pose (disp_local_iso_cleaving_invertible_2cell
h₂
((pr121 F) c c (id₁ c · id₁ c) x z (f;; g))
(idempunitor c)) as p1.
pose (disp_local_iso_cleaving_invertible_2cell h₁ (f;; g) (idempunitor c)) as p2.
rewrite <- (idtoiso_2_1_isotoid_2_1 HC (idempunitor c)) in p1, p2.
etrans.
{
apply maponpaths.
pose (transportb_transpose_right (disp_isotoid_2_1 D₁ HD₁_2_1 _ _ _ p2)) as p.
rewrite idtoiso_2_1_isotoid_2_1 in p.
exact p.
}
clear p2.
refine (!_).
etrans.
{
pose (transportb_transpose_right (disp_isotoid_2_1 D₂ HD₂_2_1 _ _ _ p1)) as p.
rewrite idtoiso_2_1_isotoid_2_1 in p.
exact p.
}
clear p1.
apply transportb_disp_psfunctor.
exact HC.
Qed.
Definition fiber_functor
(c : C)
: discrete_fiber_category D₁ HD₁ HD₁_2_1 h₁ c
⟶
discrete_fiber_category D₂ HD₂ HD₂_2_1 h₂ c.
Proof.
use make_functor.
- exact (fiber_functor_data c).
- exact (fiber_is_functor c).
Defined.
End FiberOfFunctor.
Definition transportb_disp_psfunctor
{C : bicat}
(HC : is_univalent_2_1 C)
(D₁ : disp_bicat C)
(D₂ : disp_bicat C)
(F : disp_psfunctor D₁ D₂ (id_psfunctor C))
{x y : C}
{f g : x --> y}
{xx : D₁ x} {yy : D₁ y}
(ff : xx -->[ f ] yy)
(p : g = f)
: transportb
(mor_disp ((pr11 F) x xx) ((pr11 F) y yy)) p
((pr121 F) _ _ _ xx yy ff)
=
(pr121 F)
x y g xx yy
(transportb (mor_disp xx yy) p ff).
Proof.
induction p.
apply idpath.
Defined.
Section FiberOfFunctor.
Context {C : bicat}
(HC : is_univalent_2_1 C)
{D₁ : disp_bicat C}
(HD₁ : disp_2cells_isaprop D₁)
(HD₁_2_1 : disp_univalent_2_1 D₁)
(h₁ : local_iso_cleaving D₁)
{D₂ : disp_bicat C}
(HD₂ : disp_2cells_isaprop D₂)
(HD₂_2_1 : disp_univalent_2_1 D₂)
(h₂ : local_iso_cleaving D₂)
(F : disp_psfunctor D₁ D₂ (id_psfunctor C)).
Definition fiber_functor_data
(c : C)
: functor_data
(discrete_fiber_category D₁ HD₁ HD₁_2_1 h₁ c)
(discrete_fiber_category D₂ HD₂ HD₂_2_1 h₂ c).
Proof.
use make_functor_data.
- exact (pr11 F c).
- exact (pr121 F c c (id₁ c)).
Defined.
Definition fiber_is_functor
(c : C)
: is_functor (fiber_functor_data c).
Proof.
split.
- intros x.
exact (!(disp_isotoid_2_1 _ HD₂_2_1 (idpath _) _ _ (pr12 (pr221 F) c x))).
- intros x y z f g ; cbn.
pose ((disp_isotoid_2_1
_
HD₂_2_1 (idpath _)
_ _
(pr22 (pr221 F) c c c (id₁ c) (id₁ c) x y z f g))) as p.
cbn in p.
rewrite p ; clear p.
pose (disp_local_iso_cleaving_invertible_2cell
h₂
((pr121 F) c c (id₁ c · id₁ c) x z (f;; g))
(idempunitor c)) as p1.
pose (disp_local_iso_cleaving_invertible_2cell h₁ (f;; g) (idempunitor c)) as p2.
rewrite <- (idtoiso_2_1_isotoid_2_1 HC (idempunitor c)) in p1, p2.
etrans.
{
apply maponpaths.
pose (transportb_transpose_right (disp_isotoid_2_1 D₁ HD₁_2_1 _ _ _ p2)) as p.
rewrite idtoiso_2_1_isotoid_2_1 in p.
exact p.
}
clear p2.
refine (!_).
etrans.
{
pose (transportb_transpose_right (disp_isotoid_2_1 D₂ HD₂_2_1 _ _ _ p1)) as p.
rewrite idtoiso_2_1_isotoid_2_1 in p.
exact p.
}
clear p1.
apply transportb_disp_psfunctor.
exact HC.
Qed.
Definition fiber_functor
(c : C)
: discrete_fiber_category D₁ HD₁ HD₁_2_1 h₁ c
⟶
discrete_fiber_category D₂ HD₂ HD₂_2_1 h₂ c.
Proof.
use make_functor.
- exact (fiber_functor_data c).
- exact (fiber_is_functor c).
Defined.
End FiberOfFunctor.