Library UniMath.Algebra.Universal.SortedTypes
Require Import UniMath.Foundations.All.
Require Export UniMath.Combinatorics.MoreLists.
Require Export UniMath.Algebra.Universal.HVectors.
Declare Scope sorted_scope.
Delimit Scope sorted_scope with sorted.
Local Open Scope sorted_scope.
If X and Y are S-sorted types, then sfun X Y is an S-sorted mapping, i.e.,
a S-indexed family of functions X s → Y s.
Definition sfun {S: UU} (X Y: sUU S): UU := ∏ s: S, X s → Y s.
Notation "x s→ y" := (sfun x y) (at level 99, y at level 200, right associativity): type_scope.
Bind Scope sorted_scope with sUU.
Bind Scope sorted_scope with sfun.
Definition idsfun {S: UU} (X: sUU S): X s→ X := λ s: S, idfun (X s).
Definition scomp {S: UU} {X Y Z: sUU S} (f: Y s→ Z) (g: X s→ Y): sfun X Z
:= λ s: S, (f s) ∘ (g s).
Infix "s∘" := scomp (at level 40, left associativity): sorted_scope.
Definition sunit (S: UU): sUU S := λ σ: S, unit.
Definition tosunit {S: UU} {X: sUU S}: X s→ sunit S := λ σ: S, tounit.
Lemma iscontr_sfuntosunit {S: UU} {X: sUU S}: iscontr (X s→ sunit S).
Proof.
apply impred_iscontr.
intros.
apply iscontrfuntounit.
Defined.
An element of shSet S is an S-sorted set, i.e., an S-indexed family of sets. It ca be
immediately coerced to an S-sorted type.
Definition shSet (S: UU): UU := S → hSet.
Definition sunitset (S: UU): shSet S := λ _, unitset.
Lemma isaset_set_sfun_space {S: UU} {X: sUU S} {Y: shSet S}: isaset (X s→ Y).
Proof.
change (isaset (X s→ Y)).
apply impred_isaset.
intros.
apply isaset_forall_hSet.
Defined.
If X: sUU S, then star X is the lifting of X to the index type list S, given
by star X [s1; s2; ...; sn] = [X s1 ; X s2 ; ... ; X sn].
Definition star {S: UU} (X: sUU S): sUU (list S) := λ l: list S, hvec (vec_map X (pr2 l)).
Bind Scope hvec_scope with star.
Notation "A ⋆" := (star A) (at level 3, format "'[ ' A '⋆' ']'"): sorted_scope.
If f is an indexed mapping between S-indexed types X and Y, then starfun X is the lifting of
f to a list S-indexed mapping between list S-indexed sets star X and star Y.
Definition starfun {S: UU} {X Y: sUU S} (f: sfun X Y) : sfun X⋆ Y⋆ := λ s: list S, h1map f.
Notation "f ⋆⋆" := (starfun f) (at level 3, format "'[ ' f '⋆⋆' ']'"): sorted_scope.
Here follows the proof that starfun is functorial. Compositionality w.r.t. s∘ is presented as
(f s∘ g)⋆⋆ _ x = f⋆⋆ _ (g⋆⋆ _ x) instead of (f s∘ g)⋆⋆ = (f⋆⋆) s∘ (g⋆⋆ ) since the former
does not require function extensionality.
Lemma staridfun {S: UU} {X: sUU S} (l: list S) (x: X⋆ l): (idsfun X)⋆⋆ _ x = idsfun X⋆ _ x.
Proof.
apply h1map_idfun.
Defined.
Lemma starcomp {S: UU} {X Y Z: sUU S} (f: Y s→ Z) (g: X s→ Y) (l: list S) (x: X⋆ l)
: (f s∘ g)⋆⋆ _ x = f⋆⋆ _ (g⋆⋆ _ x).
Proof.
unfold starfun.
apply pathsinv0.
apply h1map_compose.
Defined.