Library UniMath.RealNumbers.Reals

A library about decidable Real Numbers

Author: Catherine LELAY. Oct 2015 -

Require Import UniMath.Foundations.Preamble.
Require Import UniMath.MoreFoundations.Tactics.

Require Import UniMath.RealNumbers.Prelim.
Require Import UniMath.RealNumbers.Sets.
Require Import UniMath.RealNumbers.NonnegativeRationals.
Require Export UniMath.RealNumbers.NonnegativeReals.

Local Open Scope NR_scope.

Definition

commring


Definition hr_commring : commring := commrigtocommring NonnegativeReals.

Definition NR_to_hr : NonnegativeReals × NonnegativeReals hr_commring
  := setquotpr (binopeqrelabgrdiff (rigaddabmonoid NonnegativeReals)).

Definition nat_to_hr (n : nat) : hr_commring :=
  NR_to_hr (nat_to_NonnegativeReals n,,0).

Lemma NR_to_hr_inside :
   x : NonnegativeReals × NonnegativeReals, pr1 (NR_to_hr x) x.
Proof.
  intros x.
  apply hinhpr ; simpl.
   0 ; reflexivity.
Qed.

Local Lemma iscomprelfun_NRminus :
   x y : NonnegativeReals × NonnegativeReals,
    pr1 x + pr2 y = pr1 y + pr2 x
     pr1 x - pr2 x = pr1 y - pr2 y.
Proof.
  intros x y H.
  apply (plusNonnegativeReals_eqcompat_l (pr2 x)).
  rewrite <- maxNonnegativeReals_minus_plus.
  apply (plusNonnegativeReals_eqcompat_l (pr2 y)).
  rewrite isrdistr_max_plusNonnegativeReals, H.
  rewrite (iscomm_plusNonnegativeReals (pr2 x) (pr2 y)), <- isrdistr_max_plusNonnegativeReals, maxNonnegativeReals_minus_plus.
  now rewrite !isassoc_plusNonnegativeReals, (iscomm_plusNonnegativeReals (pr2 x)).
Qed.

Lemma iscomprelfun_hr_to_NR :
  iscomprelfun (Y := NonnegativeReals × NonnegativeReals) (binopeqrelabgrdiff (rigaddabmonoid NonnegativeReals))
               (λ x : NonnegativeReals × NonnegativeReals,
                      pr1 x - pr2 x ,, pr2 x - pr1 x).
Proof.
  intros x y.
  apply hinhuniv'.
  refine (isasetdirprod _ _ _ _ _ _) ;
    apply (pr2 (pr1 (pr1 (pr1 NonnegativeReals)))).
  intros c.
  apply dirprodeq.
  + apply iscomprelfun_NRminus.
    apply (plusNonnegativeReals_eqcompat_l (pr1 c)).
    exact (pr2 c).
  + apply (iscomprelfun_NRminus (pr2 x ,, pr1 x) (pr2 y ,, pr1 y)).
    simpl.
    rewrite (iscomm_plusNonnegativeReals (pr2 x)), (iscomm_plusNonnegativeReals (pr2 y)).
    apply (plusNonnegativeReals_eqcompat_l (pr1 c)), pathsinv0.
    exact (pr2 c).
Qed.

Definition hr_to_NR (x : hr_commring) : NonnegativeReals × NonnegativeReals.
Proof.
  revert x.
  simple refine (setquotuniv _ (_,,_) _ _).
  - apply isasetdirprod ;
    apply (pr2 (pr1 (pr1 (pr1 NonnegativeReals)))).
  - intros x.
    apply (pr1 x - pr2 x ,, pr2 x - pr1 x).
  - apply iscomprelfun_hr_to_NR.
Defined.

Definition hr_to_NRpos (x : hr_commring) : NonnegativeReals := pr1 (hr_to_NR x).
Definition hr_to_NRneg (x : hr_commring) : NonnegativeReals := pr2 (hr_to_NR x).

Lemma hr_to_NR_correct :
   (x : hr_commring), pr1 x (hr_to_NR x).
Proof.
  intros X.
  generalize (pr1 (pr2 X)).
  apply hinhuniv.
  intros x.
  pattern X at 2.
  rewrite <- (setquotl0 _ X x).
  unfold hr_to_NR.
  rewrite setquotunivcomm.
  generalize (pr2 x).
  apply (pr1 (pr2 (pr2 X))).
  apply hinhpr.
   0 ; simpl.
  change ((pr1 (pr1 x) + (pr2 (pr1 x) - pr1 (pr1 x)) + 0) =
   ((pr1 (pr1 x) - pr2 (pr1 x)) + pr2 (pr1 x) + 0))%NR.
  rewrite !isrunit_zero_plusNonnegativeReals.
  rewrite iscomm_plusNonnegativeReals, <- !maxNonnegativeReals_minus_plus.
  now apply iscomm_maxNonnegativeReals.
Qed.

Lemma hr_to_NRpos_NR_to_hr :
   (x : NonnegativeReals × NonnegativeReals),
    hr_to_NRpos (NR_to_hr x) = pr1 x - pr2 x.
Proof.
  intros x.
  unfold hr_to_NRpos, hr_to_NR, NR_to_hr.
  now rewrite setquotunivcomm.
Qed.
Lemma hr_to_NRneg_NR_to_hr :
   (x : NonnegativeReals × NonnegativeReals),
    hr_to_NRneg (NR_to_hr x) = pr2 x - pr1 x.
Proof.
  intros x.
  unfold hr_to_NRneg, hr_to_NR, NR_to_hr.
  now rewrite setquotunivcomm.
Qed.

Lemma hr_to_NR_bij :
   x : hr_commring, NR_to_hr (hr_to_NR x) = x.
Proof.
  intros x.
  unfold NR_to_hr.
  pattern x at 2.
  apply (setquotl0 _ x ((hr_to_NR x),,(hr_to_NR_correct x))).
Qed.

Lemma hr_to_NRposneg_zero :
   x : hr_commring, 0 < hr_to_NRpos x hr_to_NRneg x = 0.
Proof.
  intros x.
  rewrite <- (hr_to_NR_bij x).
  generalize (hr_to_NR x) ; clear x ; intros x.
  rewrite hr_to_NRpos_NR_to_hr, hr_to_NRneg_NR_to_hr.
  intros Hx.
  apply minusNonnegativeReals_eq_zero.
  apply lt_leNonnegativeReals.
  apply_pr2 ispositive_minusNonnegativeReals.
  exact Hx.
Qed.
Lemma hr_to_NRnegpos_zero :
   x : hr_commring, 0 < hr_to_NRneg x hr_to_NRpos x = 0.
Proof.
  intros x.
  rewrite <- (hr_to_NR_bij x).
  generalize (hr_to_NR x) ; clear x ; intros x.
  rewrite hr_to_NRpos_NR_to_hr, hr_to_NRneg_NR_to_hr.
  intros Hx.
  apply minusNonnegativeReals_eq_zero.
  apply lt_leNonnegativeReals.
  apply_pr2 ispositive_minusNonnegativeReals.
  exact Hx.
Qed.

Lemma hr_to_NRpos_NR_to_hr_std :
   (x : NonnegativeReals × NonnegativeReals),
    (0 < pr1 x pr2 x = 0)
    hr_to_NRpos (NR_to_hr x) = pr1 x.
Proof.
  intros x Hx.
  rewrite hr_to_NRpos_NR_to_hr.
  apply (plusNonnegativeReals_eqcompat_l (pr2 x)).
  rewrite <- maxNonnegativeReals_minus_plus.
  now apply max_plusNonnegativeReals.
Qed.
Lemma hr_to_NRneg_NR_to_hr_std :
   (x : NonnegativeReals × NonnegativeReals),
    (0 < pr1 x pr2 x = 0)
    hr_to_NRneg (NR_to_hr x) = pr2 x.
Proof.
  intros x Hx.
  rewrite hr_to_NRneg_NR_to_hr.
  apply (plusNonnegativeReals_eqcompat_l (pr1 x)).
  rewrite <- maxNonnegativeReals_minus_plus.
  rewrite iscomm_plusNonnegativeReals, iscomm_maxNonnegativeReals.
  now apply max_plusNonnegativeReals.
Qed.

Caracterisation of equality

Lemma NR_to_hr_eq :
   x y : NonnegativeReals × NonnegativeReals,
    pr1 x + pr2 y = pr1 y + pr2 x NR_to_hr x = NR_to_hr y.
Proof.
  intros x y.
  split ; intros H.
  - apply iscompsetquotpr.
    apply hinhpr.
     0.
    apply_pr2 plusNonnegativeReals_eqcompat_l.
    exact H.
  - generalize (invmap (weqpathsinsetquot _ _ _) H) ; clear H.
    apply hinhuniv'.
    apply (pr2 (pr1 (pr1 (pr1 NonnegativeReals)))).
    intros (c,p); generalize p; clear p.
    apply plusNonnegativeReals_eqcompat_l.
Qed.

Constants and Operations

0

Lemma hr_to_NR_zero :
  hr_to_NR 0%ring = (0,,0).
Proof.
  unfold ringunel1, unel_is ; simpl.
  unfold hr_to_NR.
  rewrite setquotunivcomm ; simpl.
  rewrite !minusNonnegativeReals_eq_zero.
  reflexivity.
  apply isrefl_leNonnegativeReals.
Qed.

1

Lemma hr_to_NR_one :
  hr_to_NR 1%ring = (1,,0).
Proof.
  unfold ringunel2, unel_is ; simpl.
  unfold rigtoringunel2, hr_to_NR.
  rewrite setquotunivcomm ; simpl.
  erewrite <- minusNonnegativeReals_correct_r.
  rewrite minusNonnegativeReals_eq_zero.
  reflexivity.
  apply isnonnegative_NonnegativeReals.
  apply pathsinv0, isrunit_zero_plusNonnegativeReals.
Qed.

plus

Lemma NR_to_hr_plus :
   x y : NonnegativeReals × NonnegativeReals,
    (NR_to_hr x + NR_to_hr y)%ring = NR_to_hr (pr1 x + pr1 y ,, pr2 x + pr2 y).
Proof.
  intros x y.
  unfold BinaryOperations.op1 ; simpl.
  unfold rigtoringop1 ; simpl.
  unfold NR_to_hr.
  apply (setquotfun2comm (binopeqrelabgrdiff (rigaddabmonoid NonnegativeReals)) (binopeqrelabgrdiff (rigaddabmonoid NonnegativeReals))).
Qed.

opp

Lemma NR_to_hr_opp :
   x : NonnegativeReals × NonnegativeReals,
    (- NR_to_hr x)%ring = NR_to_hr (pr2 x ,, pr1 x).
Proof.
  intros x.
  unfold ringinv1, grinv_is ; simpl.
  unfold abgrdiffinv.
  unfold NR_to_hr.
  apply (setquotfuncomm (binopeqrelabgrdiff (rigaddabmonoid NonnegativeReals)) (binopeqrelabgrdiff (rigaddabmonoid NonnegativeReals))).
Qed.

Lemma hr_to_NR_opp :
   x : hr_commring,
    hr_to_NR (- x)%ring = (hr_to_NRneg x ,, hr_to_NRpos x).
Proof.
  intros x.
  rewrite <- (hr_to_NR_bij x), NR_to_hr_opp.
  unfold hr_to_NRneg, hr_to_NRpos.
  generalize (hr_to_NR x) ; clear x ; intros x.
  unfold hr_to_NR, NR_to_hr.
  rewrite !setquotunivcomm.
  reflexivity.
Qed.
Lemma hr_to_NRpos_opp :
   x : hr_commring,
    hr_to_NRpos (- x)%ring = hr_to_NRneg x.
Proof.
  intros x.
  unfold hr_to_NRpos.
  now rewrite hr_to_NR_opp.
Qed.
Lemma hr_to_NRneg_opp :
   x : hr_commring,
    hr_to_NRneg (- x)%ring = hr_to_NRpos x.
Proof.
  intros x.
  unfold hr_to_NRneg.
  now rewrite hr_to_NR_opp.
Qed.

minus

Lemma NR_to_hr_minus :
   x y : NonnegativeReals × NonnegativeReals,
    (NR_to_hr x - NR_to_hr y)%ring = NR_to_hr (pr1 x + pr2 y ,, pr2 x + pr1 y).
Proof.
  intros x y.
  rewrite NR_to_hr_opp, NR_to_hr_plus.
  reflexivity.
Qed.

Lemma hr_opp_minus :
   x y : hr_commring,
    (x - y = - ((- x) - (- y)))%ring.
Proof.
  intros x y.
  rewrite <- (hr_to_NR_bij x), <- (hr_to_NR_bij y).
  rewrite !NR_to_hr_opp, !NR_to_hr_plus, NR_to_hr_opp ; simpl.
  reflexivity.
Qed.

Lemma hr_to_NRpos_minus :
   x y : hr_commring,
    hr_to_NRpos x - hr_to_NRpos y hr_to_NRpos (x - y)%ring.
Proof.
  intros X Y.
  set (x := hr_to_NRpos X) ;
  set (y := hr_to_NRpos Y).
  rewrite <- (hr_to_NR_bij X), <- (hr_to_NR_bij Y).
  rewrite NR_to_hr_minus.
  change (pr1 (hr_to_NR X)) with x.
  change (pr1 (hr_to_NR Y)) with y.
  change (pr2 (hr_to_NR X)) with (hr_to_NRneg X).
  change (pr2 (hr_to_NR Y)) with (hr_to_NRneg Y).
  rewrite hr_to_NRpos_NR_to_hr.
  simpl pr1 ; simpl pr2.
  apply_pr2 (plusNonnegativeReals_lecompat_l (hr_to_NRneg X + y)).
  rewrite <- maxNonnegativeReals_minus_plus.
  rewrite (iscomm_plusNonnegativeReals _ y), <- isassoc_plusNonnegativeReals, <- maxNonnegativeReals_minus_plus.
  rewrite isrdistr_max_plusNonnegativeReals.
  apply maxNonnegativeReals_le.
  rewrite <- max_plusNonnegativeReals.
  apply maxNonnegativeReals_le.
  eapply istrans_leNonnegativeReals, maxNonnegativeReals_le_l.
  apply plusNonnegativeReals_le_l.
  eapply istrans_leNonnegativeReals, maxNonnegativeReals_le_r.
  apply plusNonnegativeReals_le_r.
  apply hr_to_NRposneg_zero.
  apply maxNonnegativeReals_le_r.
Qed.
Lemma hr_to_NRneg_minus :
   x y : hr_commring,
    hr_to_NRneg x - hr_to_NRneg y hr_to_NRneg (x - y)%ring.
Proof.
  intros x y.
  rewrite hr_opp_minus.
  pattern x at 1 ;
    rewrite <- (grinvinv hr_commring x) ;
    pattern y at 1 ;
    rewrite <- (grinvinv hr_commring y).
  change (hr_to_NRneg (- (- x))%ring - hr_to_NRneg (- (- y))%ring
   hr_to_NRneg (- (- x - - y))%ring).
  rewrite !hr_to_NRneg_opp.
  apply hr_to_NRpos_minus.
Qed.

mult

Order

hr_lt_rel

Local Lemma isbinophrel_ltNonnegativeReals :
  isbinophrel (X := rigaddabmonoid NonnegativeReals) ltNonnegativeReals.
Proof.
  split.
  - intros x y z Hlt.
    apply plusNonnegativeReals_ltcompat_r, Hlt.
  - intros x y z Hlt.
    apply plusNonnegativeReals_ltcompat_l, Hlt.
Qed.
Definition hr_lt_rel : hrel hr_commring
  := rigtoringrel NonnegativeReals isbinophrel_ltNonnegativeReals.

Lemma NR_to_hr_lt :
   x y : NonnegativeReals × NonnegativeReals,
    pr1 x + pr2 y < pr1 y + pr2 x
     hr_lt_rel (NR_to_hr x) (NR_to_hr y).
Proof.
  intros x y.
  split.
  - intros H.
    apply hinhpr ; 0 ; simpl.
    apply plusNonnegativeReals_ltcompat_l, H.
  - apply hinhuniv ; intros H.
    apply_pr2 (plusNonnegativeReals_ltcompat_l (pr1 H)).
    exact (pr2 H).
Qed.


Local Lemma isbinophrel_leNonnegativeReals :
  isbinophrel (X := rigaddabmonoid NonnegativeReals) leNonnegativeReals.
Proof.
  split.
  - intros x y z Hlt.
    apply plusNonnegativeReals_lecompat_r, Hlt.
  - intros x y z Hlt.
    apply plusNonnegativeReals_lecompat_l, Hlt.
Qed.
Definition hr_le_rel : hrel hr_commring
  := rigtoringrel NonnegativeReals isbinophrel_leNonnegativeReals.

Lemma NR_to_hr_le :
   x y : NonnegativeReals × NonnegativeReals,
    pr1 x + pr2 y pr1 y + pr2 x
     hr_le_rel (NR_to_hr x) (NR_to_hr y).
Proof.
  intros x y.
  split.
  - intros H.
    apply hinhpr ; 0 ; simpl.
    apply plusNonnegativeReals_lecompat_l, H.
  - apply hinhuniv ; intros H.
    apply_pr2 (plusNonnegativeReals_lecompat_l (pr1 H)).
    exact (pr2 H).
Qed.

Theorems about order

Lemma hr_notlt_le :
   X Y, ¬ hr_lt_rel X Y hr_le_rel Y X.
Proof.
  intros x y.
  rewrite <- (hr_to_NR_bij x), <- (hr_to_NR_bij y).
  split ; intro H.
  - apply NR_to_hr_le.
    apply notlt_leNonnegativeReals.
    intro H0 ; apply H.
    apply NR_to_hr_lt.
    exact H0.
  - intro H0.
    refine (pr2 (notlt_leNonnegativeReals _ _) _ _).
    refine (pr2 (NR_to_hr_le _ _) _).
    apply H.
    apply_pr2 NR_to_hr_lt.
    exact H0.
Qed.

Lemma hr_lt_le :
   X Y, hr_lt_rel X Y hr_le_rel X Y.
Proof.
  intros x y.
  rewrite <- (hr_to_NR_bij x), <- (hr_to_NR_bij y).
  intro H.
  apply NR_to_hr_le.
  apply lt_leNonnegativeReals.
  apply_pr2 NR_to_hr_lt.
  exact H.
Qed.

Lemma isantisymm_hr_le :
  isantisymm hr_le_rel.
Proof.
  apply isantisymmabgrdiffrel.
  intros X Y Hxy Hyx.
  apply isantisymm_leNonnegativeReals.
  now split.
Qed.

Lemma isStrongOrder_hr_lt : isStrongOrder hr_lt_rel.
Proof.
  repeat split.
  - apply istransabgrdiffrel.
    exact istrans_ltNonnegativeReals.
  - apply iscotransabgrdiffrel.
    exact iscotrans_ltNonnegativeReals.
  - apply isirreflabgrdiffrel.
    exact isirrefl_ltNonnegativeReals.
Qed.
Lemma iscotrans_hr_lt :
  iscotrans hr_lt_rel.
Proof.
  apply iscotransabgrdiffrel.
  exact iscotrans_ltNonnegativeReals.
Qed.

Lemma hr_to_NR_nonnegative :
   x : hr_commring,
    (hr_to_NRneg x = 0) hr_le_rel 0%ring x.
Proof.
  intros x.
  pattern x at 2.
  rewrite <- (hr_to_NR_bij x), <- (hr_to_NR_bij 0%ring), hr_to_NR_zero.
  unfold hr_to_NRneg.
  split.
  - generalize (hr_to_NR x). intros hx.
    change hx with (pr1 hx,,pr2 hx).
    generalize (pr1 hx), (pr2 hx).
    clear hx.
    intros x1 x2 ; simpl pr1 ; simpl pr2 ; clear x ; intros →.
    apply NR_to_hr_le ; simpl.
    rewrite !isrunit_zero_plusNonnegativeReals.
    now apply isnonnegative_NonnegativeReals.
  - pattern x at 2.
    rewrite <- (hr_to_NR_bij x).
    generalize (hr_to_NR x) ; clear x ; intros x Hx.
    unfold hr_to_NR, NR_to_hr.
    rewrite setquotunivcomm ; simpl.
    apply_pr2_in NR_to_hr_le Hx.
    rewrite isrunit_zero_plusNonnegativeReals, islunit_zero_plusNonnegativeReals in Hx.
    now apply minusNonnegativeReals_eq_zero.
Qed.

Lemma hr_to_NR_positive :
   x : hr_commring,
    (hr_to_NRpos x 0 × hr_to_NRneg x = 0) hr_lt_rel 0%ring x.
Proof.
  intros x.
  repeat split.
  - pattern x at 3.
    rewrite <- (hr_to_NR_bij x), <- (hr_to_NR_bij 0%ring), hr_to_NR_zero.
    unfold hr_to_NRpos, hr_to_NRneg.
    change (hr_to_NR x) with (pr1 (hr_to_NR x),,pr2 _).
    generalize (pr1 (hr_to_NR x)), (pr2 (hr_to_NR x)) ;
      intros x1 x2 ; simpl pr1 ; simpl pr2 ; clear x ; intros H1 ; rewrite (pr2 H1).
    apply NR_to_hr_lt ; simpl.
    rewrite !isrunit_zero_plusNonnegativeReals.
    now apply ispositive_apNonnegativeReals, (pr1 H1).
  - rewrite <- (hr_to_NR_bij x), <- (hr_to_NR_bij 0%ring), hr_to_NR_zero in X.
    apply_pr2_in NR_to_hr_lt X.
    rewrite isrunit_zero_plusNonnegativeReals, islunit_zero_plusNonnegativeReals in X.
    apply_pr2 ispositive_apNonnegativeReals.
    eapply istrans_le_lt_ltNonnegativeReals, X.
    now apply isnonnegative_NonnegativeReals.
  - apply_pr2 hr_to_NR_nonnegative.
    now apply hr_lt_le.
Qed.

Lemma hr_to_NR_nonpositive :
   x : hr_commring,
    (hr_to_NRpos x = 0) hr_le_rel x 0%ring.
Proof.
  intros x.
  pattern x at 2.
  rewrite <- (hr_to_NR_bij x), <- (hr_to_NR_bij 0%ring), hr_to_NR_zero.
  unfold hr_to_NRpos.
  split.
  - change (hr_to_NR x) with (pr1 (hr_to_NR x),,pr2 _).
    simpl pr1 ; simpl pr2 ; intros →.
    apply NR_to_hr_le ; simpl.
    rewrite !islunit_zero_plusNonnegativeReals.
    now apply isnonnegative_NonnegativeReals.
  - pattern x at 2.
    rewrite <- (hr_to_NR_bij x).
    generalize (hr_to_NR x) ; clear x ; intros x Hx.
    unfold hr_to_NR, NR_to_hr.
    rewrite setquotunivcomm ; simpl.
    apply_pr2_in NR_to_hr_le Hx.
    rewrite isrunit_zero_plusNonnegativeReals, islunit_zero_plusNonnegativeReals in Hx.
    now apply minusNonnegativeReals_eq_zero.
Qed.

Lemma hr_to_NR_negative :
   x : hr_commring,
    (hr_to_NRpos x = 0 × hr_to_NRneg x 0) hr_lt_rel x 0%ring.
Proof.
  intros x.
  repeat split.
  - pattern x at 3.
    rewrite <- (hr_to_NR_bij x), <- (hr_to_NR_bij 0%ring), hr_to_NR_zero.
    unfold hr_to_NRpos, hr_to_NRneg.
    change (hr_to_NR x) with (pr1 (hr_to_NR x),,pr2 _).
    simpl pr1 ; simpl pr2 ; intros H2 ; rewrite (pr1 H2).
    apply NR_to_hr_lt ; simpl.
    rewrite !islunit_zero_plusNonnegativeReals.
    now apply ispositive_apNonnegativeReals, (pr2 H2).
  - apply_pr2 hr_to_NR_nonpositive.
    now apply hr_lt_le.
  - rewrite <- (hr_to_NR_bij x), <- (hr_to_NR_bij 0%ring), hr_to_NR_zero in X.
    apply_pr2_in NR_to_hr_lt X.
    rewrite isrunit_zero_plusNonnegativeReals, islunit_zero_plusNonnegativeReals in X.
    apply_pr2 ispositive_apNonnegativeReals.
    eapply istrans_le_lt_ltNonnegativeReals, X.
    now apply isnonnegative_NonnegativeReals.
Qed.

Lemma hr_plus_ltcompat_l :
   x y z : hr_commring, hr_lt_rel y z hr_lt_rel (y+x)%ring (z+x)%ring.
Proof.
  intros X Y Z.
  rewrite <- (hr_to_NR_bij X), <- (hr_to_NR_bij Y), <- (hr_to_NR_bij Z).
  rewrite !NR_to_hr_plus.
  split ; intro Hlt.
  - apply NR_to_hr_lt ; simpl.
    rewrite !(iscomm_plusNonnegativeReals _ (pr1 (hr_to_NR X))), !isassoc_plusNonnegativeReals.
    apply plusNonnegativeReals_ltcompat_r.
    rewrite <- ! isassoc_plusNonnegativeReals.
    apply plusNonnegativeReals_ltcompat_l.
    now apply_pr2 NR_to_hr_lt.
  - apply NR_to_hr_lt ; simpl.
    apply_pr2 (plusNonnegativeReals_ltcompat_l (pr2 (hr_to_NR X))).
    apply_pr2 (plusNonnegativeReals_ltcompat_r (pr1 (hr_to_NR X))).
    rewrite <- ! isassoc_plusNonnegativeReals.
    rewrite !(iscomm_plusNonnegativeReals (pr1 (hr_to_NR X))), !(isassoc_plusNonnegativeReals (_ + pr1 (hr_to_NR X))).
    now apply_pr2_in NR_to_hr_lt Hlt.
Qed.
Lemma hr_plus_ltcompat_r :
   x y z : hr_commring, hr_lt_rel y z hr_lt_rel (x + y)%ring (x + z)%ring.
Proof.
  intros x y z.
  rewrite !(ringcomm1 _ x).
  apply hr_plus_ltcompat_l.
Qed.

Lemma hr_plus_lecompat_l :
   x y z : hr_commring, hr_le_rel y z hr_le_rel (y + x)%ring (z + x)%ring.
Proof.
  intros x y z ; split ; intro Hle.
  - apply hr_notlt_le.
    apply_pr2_in hr_notlt_le Hle.
    intro Hlt ; apply Hle.
    apply_pr2 (hr_plus_ltcompat_l x).
    exact Hlt.
  - apply hr_notlt_le.
    apply_pr2_in hr_notlt_le Hle.
    intro Hlt ; apply Hle.
    apply hr_plus_ltcompat_l.
    exact Hlt.
Qed.
Lemma hr_plus_lecompat_r :
   x y z : hr_commring, hr_le_rel y z hr_le_rel (x + y)%ring (x + z)%ring.
Proof.
  intros x y z.
  rewrite !(ringcomm1 _ x).
  apply hr_plus_lecompat_l.
Qed.

Lemma hr_mult_ltcompat_l :
   x y z : hr_commring, hr_lt_rel 0%ring x hr_lt_rel y z hr_lt_rel (y × x)%ring (z × x)%ring.
Proof.
  intros X Y Z Hx0 Hlt.
  apply_pr2_in hr_to_NR_positive Hx0.
  rewrite <- (hr_to_NR_bij X), <- (hr_to_NR_bij Y), <- (hr_to_NR_bij Z).
  rewrite !NR_to_hr_mult ; simpl pr1 ; simpl pr2.
  change (pr2 (hr_to_NR X)) with (hr_to_NRneg X) ;
  rewrite (pr2 Hx0).
  rewrite !israbsorb_zero_multNonnegativeReals, !isrunit_zero_plusNonnegativeReals, !islunit_zero_plusNonnegativeReals.
  apply NR_to_hr_lt ; simpl.
  rewrite <- !isrdistr_plus_multNonnegativeReals.
  apply multNonnegativeReals_ltcompat_l.
  apply ispositive_apNonnegativeReals.
  exact (pr1 Hx0).
  apply_pr2 NR_to_hr_lt.
  now rewrite !hr_to_NR_bij.
Qed.
Lemma hr_mult_ltcompat_l' :
   x y z : hr_commring, hr_le_rel 0%ring x hr_lt_rel (y × x)%ring (z × x)%ring hr_lt_rel y z.
Proof.
  intros X Y Z Hx0.
  apply_pr2_in hr_to_NR_nonnegative Hx0.
  rewrite <- (hr_to_NR_bij X), <- (hr_to_NR_bij Y), <- (hr_to_NR_bij Z).
  rewrite !NR_to_hr_mult ; simpl pr1 ; simpl pr2.
  change (pr2 (hr_to_NR X)) with (hr_to_NRneg X).
  rewrite Hx0.
  rewrite !israbsorb_zero_multNonnegativeReals, !isrunit_zero_plusNonnegativeReals, !islunit_zero_plusNonnegativeReals.
  intros Hlt.
  apply NR_to_hr_lt.
  apply multNonnegativeReals_ltcompat_l' with (pr1 (hr_to_NR X)).
  rewrite !isrdistr_plus_multNonnegativeReals.
  now apply_pr2_in NR_to_hr_lt Hlt.
Qed.
Lemma hr_mult_ltcompat_r' :
   x y z : hr_commring, hr_le_rel 0%ring x hr_lt_rel (x × y)%ring (x × z)%ring hr_lt_rel y z.
Proof.
  intros x y z.
  rewrite !(ringcomm2 _ x).
  apply hr_mult_ltcompat_l'.
Qed.

Lemma hr_mult_lecompat_l :
   x y z : hr_commring, hr_le_rel 0%ring x hr_le_rel y z hr_le_rel (y × x)%ring (z × x)%ring.
Proof.
  intros x y z Hx0 Hle.
  apply hr_notlt_le.
  apply_pr2_in hr_notlt_le Hle.
  intro Hlt ; apply Hle.
  apply (hr_mult_ltcompat_l' x).
  exact Hx0.
  exact Hlt.
Qed.
Lemma hr_mult_lecompat_l' :
   x y z : hr_commring, hr_lt_rel 0%ring x hr_le_rel (y × x)%ring (z × x)%ring hr_le_rel y z.
Proof.
  intros x y z Hx0 Hle.
  apply hr_notlt_le.
  apply_pr2_in hr_notlt_le Hle.
  intro Hlt ; apply Hle.
  apply (hr_mult_ltcompat_l x).
  exact Hx0.
  exact Hlt.
Qed.
Lemma hr_mult_lecompat_r :
   x y z : hr_commring, hr_le_rel 0%ring x hr_le_rel y z hr_le_rel (x × y)%ring (x × z)%ring.
Proof.
  intros x y z.
  rewrite !(ringcomm2 _ x).
  apply hr_mult_lecompat_l.
Qed.
Lemma hr_mult_lecompat_r' :
   x y z : hr_commring, hr_lt_rel 0%ring x hr_le_rel (x × y)%ring (x × z)%ring hr_le_rel y z.
Proof.
  intros x y z.
  rewrite !(ringcomm2 _ x).
  apply hr_mult_lecompat_l'.
Qed.

Appartness


Local Lemma isbinophrel_apNonnegativeReals :
  isbinophrel (X := rigaddabmonoid NonnegativeReals) apNonnegativeReals.
Proof.
  split.
  - intros x y z Hlt.
    apply plusNonnegativeReals_apcompat_r, Hlt.
  - intros x y z Hlt.
    apply plusNonnegativeReals_apcompat_l, Hlt.
Qed.
Definition hr_ap_rel : hrel hr_commring
  := rigtoringrel NonnegativeReals isbinophrel_apNonnegativeReals.

Lemma NR_to_hr_ap :
   x y : NonnegativeReals × NonnegativeReals,
    pr1 x + pr2 y pr1 y + pr2 x
     hr_ap_rel (NR_to_hr x) (NR_to_hr y).
Proof.
  intros x y.
  split.
  - intros H.
    apply hinhpr ; 0 ; simpl.
    apply plusNonnegativeReals_apcompat_l, H.
  - apply hinhuniv ; intros H.
    apply_pr2 (plusNonnegativeReals_apcompat_l (pr1 H)).
    exact (pr2 H).
Qed.

Theorems about apartness

Lemma hr_ap_lt :
   X Y : hr_commring, hr_ap_rel X Y (hr_lt_rel X Y) ⨿ (hr_lt_rel Y X).
Proof.
  intros X Y.
  rewrite <- (hr_to_NR_bij X), <- (hr_to_NR_bij Y).
  split ; intro Hap.
  - apply_pr2_in NR_to_hr_ap Hap.
    revert Hap.
    apply sumofmaps ; intros Hlt.
    + now left ; apply NR_to_hr_lt.
    + now right ; apply NR_to_hr_lt.
  - apply NR_to_hr_ap.
    revert Hap ; apply sumofmaps ; intros Hlt.
    + now left ; apply_pr2 NR_to_hr_lt.
    + now right ; apply_pr2 NR_to_hr_lt.
Qed.

Lemma istightap_hr_ap : istightap hr_ap_rel.
Proof.
  repeat split.
  - intros X Hap.
    rewrite <- (hr_to_NR_bij X) in Hap.
    apply_pr2_in NR_to_hr_ap Hap.
    revert Hap.
    now apply isirrefl_apNonnegativeReals.
  - intros X Y.
    rewrite <- (hr_to_NR_bij X), <- (hr_to_NR_bij Y).
    intros Hap.
    apply NR_to_hr_ap.
    apply issymm_apNonnegativeReals.
    now apply_pr2 NR_to_hr_ap.
  - intros X Y Z Hap.
    apply hr_ap_lt in Hap.
    revert Hap ; apply sumofmaps ; intros Hlt.
    + apply (iscotrans_hr_lt X Y Z) in Hlt.
      revert Hlt ; apply hinhfun ; apply sumofmaps ; intros Hlt.
      × left ; apply_pr2 hr_ap_lt.
        now left.
      × right ; apply_pr2 hr_ap_lt.
        now left.
    + apply (iscotrans_hr_lt _ Y _) in Hlt.
      revert Hlt ; apply hinhfun ; apply sumofmaps ; intros Hlt.
      × right ; apply_pr2 hr_ap_lt.
        now right.
      × left ; apply_pr2 hr_ap_lt.
        now right.
  - intros X Y Hap.
    apply isantisymm_hr_le.
    + apply hr_notlt_le.
      intro Hlt ; apply Hap.
      apply_pr2 hr_ap_lt.
      now right.
    + apply hr_notlt_le.
      intro Hlt ; apply Hap.
      apply_pr2 hr_ap_lt.
      now left.
Qed.

Structures

Lemma islapbinop_plus : islapbinop (X := _,,_,,istightap_hr_ap) BinaryOperations.op1.
Proof.
  intros X Y Z.
  unfold tightapSet_rel ; simpl pr1.
  intro Hap.
  apply_pr2 hr_ap_lt.
  apply hr_ap_lt in Hap.
  revert Hap ; apply sumofmaps ; intros Hlt.
  - left.
    apply_pr2 (hr_plus_ltcompat_l X).
    exact Hlt.
  - right.
    apply_pr2 (hr_plus_ltcompat_l X).
    exact Hlt.
Qed.
Lemma israpbinop_plus : israpbinop (X := _,,_,,istightap_hr_ap) BinaryOperations.op1.
Proof.
  intros X Y Z Hap.
  apply islapbinop_plus with X.
  rewrite !(ringcomm1 _ _ X).
  exact Hap.
Qed.

Lemma islapbinop_mult : islapbinop (X := _,,_,,istightap_hr_ap) BinaryOperations.op2.
Proof.
  intros X Y Z.
  unfold tightapSet_rel ; simpl pr1.
  rewrite <- (hr_to_NR_bij X), <- (hr_to_NR_bij Y), <- (hr_to_NR_bij Z), !NR_to_hr_mult.
  intros Hap.
  apply_pr2_in NR_to_hr_ap Hap ; simpl in Hap.
  cut ( Y Z, (pr1 (hr_to_NR Z) × pr1 (hr_to_NR X) + pr2 (hr_to_NR Z) × pr2 (hr_to_NR X) + (pr1 (hr_to_NR Y) × pr2 (hr_to_NR X) + pr2 (hr_to_NR Y) × pr1 (hr_to_NR X)))
       = (pr1 (hr_to_NR Z) + pr2 (hr_to_NR Y)) × pr1 (hr_to_NR X) + (pr2 (hr_to_NR Z) + pr1 (hr_to_NR Y)) × pr2 (hr_to_NR X)).
  intro H ; simpl in H,Hap ; rewrite !H in Hap ; clear H.
  apply ap_plusNonnegativeReals in Hap.
  apply NR_to_hr_ap.
  revert Hap ; apply hinhuniv ; apply sumofmaps ; intros Hap.
  - apply ap_multNonnegativeReals in Hap.
    revert Hap ; apply hinhuniv ; apply sumofmaps ; intros Hap.
    + exact Hap.
    + now eapply fromempty, (isirrefl_apNonnegativeReals _), Hap .
  - apply ap_multNonnegativeReals in Hap.
    revert Hap ; apply hinhuniv ; apply sumofmaps ; intros Hap.
    + rewrite (iscomm_plusNonnegativeReals (pr1 (hr_to_NR Z))), iscomm_plusNonnegativeReals.
      now apply issymm_apNonnegativeReals, Hap.
    + now eapply fromempty, (isirrefl_apNonnegativeReals _), Hap.
  - clear ; intros Y Z.
    rewrite !isrdistr_plus_multNonnegativeReals.
    rewrite !isassoc_plusNonnegativeReals.
    apply_pr2 plusNonnegativeReals_eqcompat_r.
    do 2 rewrite iscomm_plusNonnegativeReals, !isassoc_plusNonnegativeReals.
    reflexivity.
Qed.
Lemma israpbinop_mult : israpbinop (X := _,,_,,istightap_hr_ap) BinaryOperations.op2.
Proof.
  intros X Y Z Hap.
  apply islapbinop_mult with X.
  rewrite !(ringcomm2 _ _ X).
  exact Hap.
Qed.

Lemma hr_ap_0_1 :
  isnonzeroCR hr_commring (hr_ap_rel,, istightap_hr_ap).
Proof.
  change (hr_ap_rel 1%ring 0%ring).
  rewrite <- (hr_to_NR_bij 1%ring), <- (hr_to_NR_bij 0%ring), hr_to_NR_one, hr_to_NR_zero.
  apply NR_to_hr_ap.
  rewrite !isrunit_zero_plusNonnegativeReals.
  apply isnonzeroNonnegativeReals.
Qed.

Lemma hr_islinv_neg :
   (x : hr_commring) (Hap : hr_lt_rel x 0%ring),
   (NR_to_hr (0%NR,, invNonnegativeReals (hr_to_NRneg x) (pr2 (pr2 (hr_to_NR_negative _) Hap))) × x)%ring = 1%ring.
Proof.
  intros x Hap.
  pattern x at 3;
    rewrite <- (hr_to_NR_bij x).
  rewrite NR_to_hr_mult ; simpl.
  rewrite !islabsorb_zero_multNonnegativeReals , !islunit_zero_plusNonnegativeReals.
  rewrite islinv_invNonnegativeReals.
  rewrite <- (hr_to_NR_bij 1%ring), hr_to_NR_one.
  apply maponpaths.
  apply maponpaths.
  erewrite <- israbsorb_zero_multNonnegativeReals.
  apply maponpaths.
  apply (pr1 (pr2 (hr_to_NR_negative x) Hap)).
Qed.
Lemma hr_isrinv_neg :
   (x : hr_commring) (Hap : hr_lt_rel x 0%ring),
   (x × NR_to_hr (0%NR,, invNonnegativeReals (hr_to_NRneg x) (pr2 (pr2 (hr_to_NR_negative _) Hap))))%ring = 1%ring.
Proof.
  intros x Hap.
  rewrite ringcomm2.
  now apply (hr_islinv_neg x Hap).
Qed.

Lemma hr_islinv_pos :
   (x : hr_commring) (Hap : hr_lt_rel 0%ring x),
   (NR_to_hr (invNonnegativeReals (hr_to_NRpos x) (pr1 (pr2 (hr_to_NR_positive _) Hap)) ,, 0%NR) × x)%ring = 1%ring.
Proof.
  intros x Hap.
  pattern x at 3;
    rewrite <- (hr_to_NR_bij x).
  rewrite NR_to_hr_mult ; simpl.
  rewrite !islabsorb_zero_multNonnegativeReals , !isrunit_zero_plusNonnegativeReals.
  rewrite islinv_invNonnegativeReals.
  rewrite <- (hr_to_NR_bij 1%ring), hr_to_NR_one.
  apply maponpaths.
  apply maponpaths.
  erewrite <- israbsorb_zero_multNonnegativeReals.
  apply maponpaths.
  apply (pr2 (pr2 (hr_to_NR_positive x) Hap)).
Qed.
Lemma hr_isrinv_pos :
   (x : hr_commring) (Hap : hr_lt_rel 0%ring x),
   (x × NR_to_hr (invNonnegativeReals (hr_to_NRpos x) (pr1 (pr2 (hr_to_NR_positive _) Hap)) ,, 0%NR))%ring = 1%ring.
Proof.
  intros x Hap.
  rewrite ringcomm2.
  now apply (hr_islinv_pos x Hap).
Qed.

Lemma hr_ex_inv :
   x : hr_commring,
    hr_ap_rel x 0%ring multinvpair hr_commring x.
Proof.
  intros x Hap.
  generalize (pr1 (hr_ap_lt _ _) Hap) ;
    apply sumofmaps ; intros Hlt ; simpl.
  - eexists ; split.
    refine (hr_islinv_neg _ _).
    exact Hlt.
    exact (hr_isrinv_neg _ _).
  - eexists ; split.
    refine (hr_islinv_pos _ _).
    exact Hlt.
    exact (hr_isrinv_pos _ _).
Defined.

Definition hr_ConstructiveField : ConstructiveField.
Proof.
   hr_commring.
   (_,,istightap_hr_ap).
  repeat split.
  - exact islapbinop_plus.
  - exact israpbinop_plus.
  - exact islapbinop_mult.
  - exact israpbinop_mult.
  - exact hr_ap_0_1.
  - exact hr_ex_inv.
Defined.

hr_abs


Definition hr_abs (x : hr_ConstructiveField) : NonnegativeReals :=
  maxNonnegativeReals (hr_to_NRpos x) (hr_to_NRneg x).

Lemma NR_to_hr_abs :
   x : NonnegativeReals × NonnegativeReals,
    hr_abs (NR_to_hr x) maxNonnegativeReals (pr1 x) (pr2 x).
Proof.
  intros x.
  unfold hr_abs.
  rewrite hr_to_NRpos_NR_to_hr, hr_to_NRneg_NR_to_hr.
  apply maxNonnegativeReals_le.
  - eapply istrans_leNonnegativeReals, maxNonnegativeReals_le_l.
    now apply minusNonnegativeReals_le.
  - eapply istrans_leNonnegativeReals, maxNonnegativeReals_le_r.
    now apply minusNonnegativeReals_le.
Qed.

Lemma hr_abs_opp :
   x : hr_ConstructiveField, hr_abs (- x)%ring = hr_abs x.
Proof.
  intros x.
  unfold hr_abs.
  rewrite hr_to_NRpos_opp, hr_to_NRneg_opp.
  apply iscomm_maxNonnegativeReals.
Qed.

Lemma istriangle_hr_abs :
   x y : hr_ConstructiveField,
    hr_abs (x + y)%ring hr_abs x + hr_abs y.
Proof.
  intros x y.
  pattern x at 1 ; rewrite <- (hr_to_NR_bij x) ;
  pattern y at 1 ; rewrite <- (hr_to_NR_bij y).
  rewrite NR_to_hr_plus.
  eapply istrans_leNonnegativeReals.
  apply NR_to_hr_abs.
  apply maxNonnegativeReals_le ; apply plusNonnegativeReals_lecompat.
  apply maxNonnegativeReals_le_l.
  apply maxNonnegativeReals_le_l.
  apply maxNonnegativeReals_le_r.
  apply maxNonnegativeReals_le_r.
Qed.

Lemma istriangle_hr_abs' :
   x y : hr_ConstructiveField,
    hr_abs x - hr_abs y hr_abs (x + y)%ring.
Proof.
  intros x y.
  apply_pr2 (plusNonnegativeReals_lecompat_l (hr_abs y)).
  rewrite <- maxNonnegativeReals_minus_plus.
  apply maxNonnegativeReals_le.
  - assert (Hx : x = ((x + y) + (- y))%ring).
    { now rewrite ringassoc1, ringrinvax1, ringrunax1. }
    pattern x at 1 ; rewrite Hx.
    rewrite <- (hr_abs_opp y).
    apply istriangle_hr_abs.
  - apply plusNonnegativeReals_le_r.
Qed.

Lemma hr_abs_minus :
   x y : hr_ConstructiveField,
    hr_abs x - hr_abs y hr_abs (x - y)%ring.
Proof.
  intros x y.
  rewrite <- (hr_abs_opp y).
  apply istriangle_hr_abs'.
Qed.

Lemma multNonnegativeReals_lecompat :
   x y z t : NonnegativeReals, x y z t x × z y × t.
Proof.
  intros x y z t H H0.
  eapply istrans_leNonnegativeReals, multNonnegativeReals_lecompat_l', H.
  apply multNonnegativeReals_lecompat_r', H0.
Qed.
Lemma ispositive_multNonnegativeReals :
   x y : NonnegativeReals, 0 < x 0 < y 0 < x × y.
Proof.
  intros x y.
  split.
  - intros H.
    rewrite <- (islabsorb_zero_multNonnegativeReals y).
    apply multNonnegativeReals_ltcompat_l.
    apply (pr2 H).
    apply (pr1 H).
  - intros H ; split.
    eapply multNonnegativeReals_ltcompat_l'.
    rewrite islabsorb_zero_multNonnegativeReals.
    exact H.
    eapply multNonnegativeReals_ltcompat_r'.
    rewrite israbsorb_zero_multNonnegativeReals.
    exact H.
Qed.
Lemma maxNonnegativeReals_lt' :
   x y z : NonnegativeReals,
    z < maxNonnegativeReals x y z < x z < y.
Proof.
  intros x y z.
  intros H.
  generalize (iscotrans_ltNonnegativeReals _ x _ H).
  apply hinhfun.
  apply sumofmaps ;
  intros Hx.
  - now left.
  - right.
    rewrite <- (maxNonnegativeReals_carac_r x y).
    apply H.
    apply notlt_leNonnegativeReals ; intros Hy.
    apply (isirrefl_ltNonnegativeReals (maxNonnegativeReals x y)).
    apply maxNonnegativeReals_lt.
    exact Hx.
    now apply istrans_ltNonnegativeReals with x.
Qed.

Lemma hr_abs_mult :
   x y : hr_ConstructiveField, hr_abs (x × y)%ring = hr_abs x × hr_abs y.
Proof.
  intros x y.
  pattern x at 1 ; rewrite <- (hr_to_NR_bij x) ;
  pattern y at 1 ; rewrite <- (hr_to_NR_bij y).
  rewrite NR_to_hr_mult.
  change (pr1 (hr_to_NR x)) with (hr_to_NRpos x) ;
    change (pr1 (hr_to_NR y)) with (hr_to_NRpos y) ;
    change (pr2 (hr_to_NR x)) with (hr_to_NRneg x) ;
    change (pr2 (hr_to_NR y)) with (hr_to_NRneg y).
  rewrite <- !max_plusNonnegativeReals.
  unfold hr_abs.
  rewrite hr_to_NRpos_NR_to_hr_std, hr_to_NRneg_NR_to_hr_std ; simpl.
  - rewrite isldistr_max_multNonnegativeReals, !isrdistr_max_multNonnegativeReals.
    rewrite !isassoc_maxNonnegativeReals.
    apply maponpaths.
    rewrite iscomm_maxNonnegativeReals, !isassoc_maxNonnegativeReals.
    rewrite iscomm_maxNonnegativeReals, !isassoc_maxNonnegativeReals.
    apply maponpaths.
    apply iscomm_maxNonnegativeReals.
  - intros H.
    apply maxNonnegativeReals_lt' in H.
    apply le0_NonnegativeReals.
    revert H ; apply hinhuniv ; apply sumofmaps ; intros H ;
    apply_pr2_in ispositive_multNonnegativeReals H ;
    apply maxNonnegativeReals_le ;
    apply_pr2 le0_NonnegativeReals.
    now rewrite (hr_to_NRposneg_zero _ (pr2 H)), israbsorb_zero_multNonnegativeReals.
    now rewrite (hr_to_NRposneg_zero _ (pr1 H)), islabsorb_zero_multNonnegativeReals.
    now rewrite (hr_to_NRnegpos_zero _ (pr1 H)), islabsorb_zero_multNonnegativeReals.
    now rewrite (hr_to_NRnegpos_zero _ (pr2 H)), israbsorb_zero_multNonnegativeReals.
  - intros H.
    apply maxNonnegativeReals_lt' in H.
    apply le0_NonnegativeReals.
    revert H ; apply hinhuniv ; apply sumofmaps ; intros H ;
    apply_pr2_in ispositive_multNonnegativeReals H ;
    apply maxNonnegativeReals_le ;
    apply_pr2 le0_NonnegativeReals.
    now rewrite (hr_to_NRposneg_zero _ (pr2 H)), israbsorb_zero_multNonnegativeReals.
    now rewrite (hr_to_NRposneg_zero _ (pr1 H)), islabsorb_zero_multNonnegativeReals.
    now rewrite (hr_to_NRnegpos_zero _ (pr1 H)), islabsorb_zero_multNonnegativeReals.
    now rewrite (hr_to_NRnegpos_zero _ (pr2 H)), israbsorb_zero_multNonnegativeReals.
  - intros H.
    apply_pr2_in ispositive_multNonnegativeReals H.
    rewrite hr_to_NRposneg_zero.
    apply islabsorb_zero_multNonnegativeReals.
    exact (pr1 H).
  - intros H.
    apply_pr2_in ispositive_multNonnegativeReals H.
    rewrite hr_to_NRposneg_zero.
    apply islabsorb_zero_multNonnegativeReals.
    exact (pr1 H).
Qed.

Archimedean


Lemma nat_to_hr_O :
  nat_to_hr O = 0%ring.
Proof.
  unfold nat_to_hr.
  rewrite nat_to_NonnegativeReals_O.
  reflexivity.
Qed.

Lemma nat_to_hr_S :
   n : nat, nat_to_hr (S n) = (1 + nat_to_hr n)%ring.
Proof.
  intros n.
  unfold nat_to_hr.
  rewrite nat_to_NonnegativeReals_Sn, iscomm_plusNonnegativeReals.
  rewrite <- (hr_to_NR_bij 1%ring), hr_to_NR_one, NR_to_hr_plus.
  rewrite !isrunit_zero_plusNonnegativeReals.
  reflexivity.
Qed.

Lemma hr_archimedean :
  isarchCF (λ x y : hr_ConstructiveField, hr_lt_rel y x).
Proof.
  assert (Hadd : @isbinophrel (rigaddabmonoid NonnegativeReals) gtNonnegativeReals).
  { split ; intros a b c.
    apply plusNonnegativeReals_ltcompat_r.
    apply plusNonnegativeReals_ltcompat_l. }
  assert (Htra : istrans gtNonnegativeReals).
  { intros a b c Hab Hbc.
    now apply istrans_ltNonnegativeReals with b. }
  assert (Harch : isarchrig (@setquot_aux (rigaddabmonoid NonnegativeReals) gtNonnegativeReals)).
  { set (H := NonnegativeReals_Archimedean).
    repeat split.
    - intros y1 y2.
      apply hinhuniv.
      intros c.
      generalize (pr2 c) ; intros Hc.
      apply_pr2_in plusNonnegativeReals_ltcompat_l Hc.
      generalize (isarchrig_diff _ H _ _ Hc).
      apply hinhfun.
      intros n.
       (pr1 n).
      apply hinhpr.
       0%NR.
      apply plusNonnegativeReals_ltcompat_l.
      exact (pr2 n).
    - intros x.
      generalize (isarchrig_gt _ H x).
      apply hinhfun.
      intros n.
       (pr1 n).
      apply hinhpr.
       0%NR.
      apply plusNonnegativeReals_ltcompat_l.
      exact (pr2 n).
    - intros x.
      generalize (isarchrig_pos _ H x).
      apply hinhfun.
      intros n.
       (pr1 n).
      apply hinhpr.
       0%NR.
      apply plusNonnegativeReals_ltcompat_l.
      exact (pr2 n). }
  intros x.
  generalize (isarchring_isarchCF (X := hr_ConstructiveField) _ (isarchrigtoring NonnegativeReals gtNonnegativeReals ispositive_oneNonnegativeReals Hadd Htra Harch) x).
  apply hinhfun.
  intros n.
   (pr1 n).
  generalize (pr1 n) (pr2 n) ; clear n ; intros n Hn.
  simpl pr1.
  rewrite <- (hr_to_NR_bij x), <- (hr_to_NR_bij (@nattoring hr_ConstructiveField n)) in Hn |- ×.
  revert Hn.
  apply hinhfun ; simpl.
  intros c.
  exact c.
Qed.

Completeness


Definition Cauchy_seq (u : nat hr_ConstructiveField) : hProp.
Proof.
  apply (hProppair ( c : NonnegativeReals, 0 < c N : nat, n m : nat, N n N m hr_abs (u m - u n)%ring < c)).
  apply impred_isaprop ; intro.
  apply isapropimpl.
  apply pr2.
Defined.

Lemma Cauchy_seq_pr1 (u : nat hr_ConstructiveField) :
  let x := λ n : nat, hr_to_NRpos (u n) in
  Cauchy_seq u NonnegativeReals.Cauchy_seq x.
Proof.
  intros x.
  set (y := λ n : nat, hr_to_NRneg (u n)).
  assert (Hxy : n, NR_to_hr (x n ,, y n) = u n).
  { intros n.
    unfold x, y, hr_to_NRpos, hr_to_NRneg.
    apply hr_to_NR_bij. }
  intros Cu c Hc.
  generalize (Cu c Hc).
  apply hinhfun ; intros N.
   (pr1 N) ; intros n m Hn Hm.
  generalize ((pr2 N) _ _ Hn Hm) ; intros Hu.
  split.
  - apply (plusNonnegativeReals_ltcompat_r (x m)) in Hu.
    eapply istrans_le_lt_ltNonnegativeReals, Hu.
    rewrite hr_opp_minus, hr_abs_opp, ringcomm1.
    change (- - u n)%ring with (grinv hr_commring (grinv hr_commring (u n))).
    rewrite (grinvinv hr_commring (u n)).
    eapply istrans_leNonnegativeReals, plusNonnegativeReals_lecompat_r, maxNonnegativeReals_le_l.
    eapply istrans_leNonnegativeReals, plusNonnegativeReals_lecompat_r, hr_to_NRpos_minus.
    change (hr_to_NRpos (u n)) with (x n) ;
      change (hr_to_NRpos (u m)) with (x m).
    rewrite iscomm_plusNonnegativeReals, <- maxNonnegativeReals_minus_plus.
    now apply maxNonnegativeReals_le_l.
  - apply (plusNonnegativeReals_ltcompat_r (x n)) in Hu.
    eapply istrans_le_lt_ltNonnegativeReals, Hu.
    eapply istrans_leNonnegativeReals, plusNonnegativeReals_lecompat_r, maxNonnegativeReals_le_l.
    eapply istrans_leNonnegativeReals, plusNonnegativeReals_lecompat_r, hr_to_NRpos_minus.
    change (hr_to_NRpos (u n)) with (x n) ;
      change (hr_to_NRpos (u m)) with (x m).
    rewrite iscomm_plusNonnegativeReals, <- maxNonnegativeReals_minus_plus.
    now apply maxNonnegativeReals_le_l.
Qed.
Lemma Cauchy_seq_pr2 (u : nat hr_ConstructiveField) :
  let y := λ n : nat, hr_to_NRneg (u n) in
  Cauchy_seq u NonnegativeReals.Cauchy_seq y.
Proof.
  intros y.
  set (x := λ n : nat, hr_to_NRpos (u n)).
  assert (Hxy : n, NR_to_hr (x n ,, y n) = u n).
  { intros n.
    unfold x, y, hr_to_NRpos, hr_to_NRneg.
    apply hr_to_NR_bij. }
  intros Cu c Hc.
  generalize (Cu c Hc).
  apply hinhfun ; intros N.
   (pr1 N) ; intros n m Hn Hm.
  generalize ((pr2 N) _ _ Hn Hm) ; intros Hu.
  split.
  - apply (plusNonnegativeReals_ltcompat_r (y m)) in Hu.
    eapply istrans_le_lt_ltNonnegativeReals, Hu.
    rewrite hr_opp_minus, hr_abs_opp, ringcomm1.
    change (- - u n)%ring with (grinv hr_commring (grinv hr_commring (u n))).
    rewrite (grinvinv hr_commring (u n)).
    eapply istrans_leNonnegativeReals, plusNonnegativeReals_lecompat_r, maxNonnegativeReals_le_r.
    eapply istrans_leNonnegativeReals, plusNonnegativeReals_lecompat_r, hr_to_NRneg_minus.
    change (hr_to_NRneg (u n)) with (y n) ;
      change (hr_to_NRneg (u m)) with (y m).
    rewrite iscomm_plusNonnegativeReals, <- maxNonnegativeReals_minus_plus.
    now apply maxNonnegativeReals_le_l.
  - apply (plusNonnegativeReals_ltcompat_r (y n)) in Hu.
    eapply istrans_le_lt_ltNonnegativeReals, Hu.
    eapply istrans_leNonnegativeReals, plusNonnegativeReals_lecompat_r, maxNonnegativeReals_le_r.
    eapply istrans_leNonnegativeReals, plusNonnegativeReals_lecompat_r, hr_to_NRneg_minus.
    change (hr_to_NRneg (u n)) with (y n) ;
      change (hr_to_NRneg (u m)) with (y m).
    rewrite iscomm_plusNonnegativeReals, <- maxNonnegativeReals_minus_plus.
    now apply maxNonnegativeReals_le_l.
Qed.

Definition is_lim_seq (u : nat hr_ConstructiveField) (l : hr_ConstructiveField) : hProp.
Proof.
  apply (hProppair ( c : NonnegativeReals, 0 < c N : nat, n : nat, N n hr_abs (u n - l)%ring < c)).
  apply impred_isaprop ; intro.
  apply isapropimpl.
  apply pr2.
Defined.
Definition ex_lim_seq (u : nat hr_ConstructiveField) := l, is_lim_seq u l.

Lemma Cauchy_seq_impl_ex_lim_seq (u : nat hr_ConstructiveField) :
  Cauchy_seq u ex_lim_seq u.
Proof.
  intros Cu.
  set (x := λ n, hr_to_NRpos (u n)).
  set (y := λ n, hr_to_NRneg (u n)).
  assert (Hxy : n, NR_to_hr (x n ,, y n) = u n).
  { intros n.
    unfold x, y, hr_to_NRpos, hr_to_NRneg.
    apply hr_to_NR_bij. }
  generalize (Cauchy_seq_impl_ex_lim_seq x (Cauchy_seq_pr1 u Cu)).
  set (lx := Cauchy_lim_seq x (Cauchy_seq_pr1 u Cu)) ; clearbody lx ; intro Hx.
  generalize (Cauchy_seq_impl_ex_lim_seq y (Cauchy_seq_pr2 u Cu)).
  set (ly := Cauchy_lim_seq y (Cauchy_seq_pr2 u Cu)) ; clearbody ly ; intro Hy.
   (NR_to_hr (lx,,ly)).
  intros c Hc.
  apply ispositive_halfNonnegativeReals in Hc.
  generalize (Hx _ Hc) (Hy _ Hc) ;
    apply hinhfun2 ; clear Hy Hx ;
    intros Nx Ny.
   (max (pr1 Nx) (pr1 Ny)) ; intros n Hn.
  rewrite <- Hxy ; simpl pr1.
  rewrite NR_to_hr_minus ; simpl.
  apply maxNonnegativeReals_lt.
  - rewrite hr_to_NRpos_NR_to_hr.
    apply_pr2 (plusNonnegativeReals_ltcompat_r (y n + lx)).
    rewrite iscomm_plusNonnegativeReals, <- maxNonnegativeReals_minus_plus ; simpl.
    apply maxNonnegativeReals_lt.
    + rewrite (double_halfNonnegativeReals c), (iscomm_plusNonnegativeReals (y n)), (isassoc_plusNonnegativeReals lx (y n)), <- (isassoc_plusNonnegativeReals (y n)), (iscomm_plusNonnegativeReals (y n)), <- !isassoc_plusNonnegativeReals, (isassoc_plusNonnegativeReals (lx + _)).
      apply plusNonnegativeReals_ltcompat.
      apply (pr2 Nx).
      apply istransnatleh with (2 := Hn).
      apply max_le_l.
      apply_pr2 (pr2 Ny).
      apply istransnatleh with (2 := Hn).
      apply max_le_r.
    + apply plusNonnegativeReals_lt_r .
      now apply_pr2 ispositive_halfNonnegativeReals.
  - rewrite hr_to_NRneg_NR_to_hr.
    apply_pr2 (plusNonnegativeReals_ltcompat_r (x n + ly)).
    rewrite iscomm_plusNonnegativeReals, <- maxNonnegativeReals_minus_plus ; simpl.
    apply maxNonnegativeReals_lt.
    + rewrite (double_halfNonnegativeReals c), (iscomm_plusNonnegativeReals (x n)), (isassoc_plusNonnegativeReals ly (x n)), <- (isassoc_plusNonnegativeReals (x n)), (iscomm_plusNonnegativeReals (x n)), <- !isassoc_plusNonnegativeReals, (isassoc_plusNonnegativeReals (ly + _)).
      apply plusNonnegativeReals_ltcompat.
      apply (pr2 Ny).
      apply istransnatleh with (2 := Hn).
      apply max_le_r.
      apply_pr2 (pr2 Nx).
      apply istransnatleh with (2 := Hn).
      apply max_le_l.
    + apply plusNonnegativeReals_lt_r .
      now apply_pr2 ispositive_halfNonnegativeReals.
Qed.

Interface for Reals

Operations and relations


Definition Rap : hrel Reals := CFap.
Definition Rlt : hrel Reals := hr_lt_rel.
Definition Rgt : hrel Reals := λ x y : Reals, Rlt y x.
Definition Rle : hrel Reals := hr_le_rel.
Definition Rge : hrel Reals := λ x y : Reals, Rle y x.

Definition Rzero : Reals := CFzero.
Definition Rplus : binop Reals := CFplus.
Definition Ropp : unop Reals := CFopp.
Definition Rminus : binop Reals := CFminus.

Definition Rone : Reals := CFone.
Definition Rmult : binop Reals := CFmult.
Definition Rinv : x : Reals, (Rap x Rzero) Reals := CFinv.
Definition Rdiv : Reals y : Reals, (Rap y Rzero) Reals := CFdiv.

Definition Rtwo : Reals := Rplus Rone Rone.
Definition Rabs : Reals NonnegativeReals := hr_abs.

Definition NRNRtoR : NonnegativeReals NonnegativeReals Reals := λ (x y : NonnegativeReals), NR_to_hr (x,,y).
Definition RtoNRNR : Reals NonnegativeReals × NonnegativeReals := λ x : Reals, (hr_to_NR x).

Delimit Scope R_scope with R.
Local Open Scope R_scope.

Infix "≠" := Rap : R_scope.
Infix "<" := Rlt : R_scope.
Infix ">" := Rgt : R_scope.
Infix "≤" := Rle : R_scope.
Infix "≥" := Rge : R_scope.

Notation "0" := Rzero : R_scope.
Notation "1" := Rone : R_scope.
Notation "2" := Rtwo : R_scope.
Infix "+" := Rplus : R_scope.
Notation "- x" := (Ropp x) : R_scope.
Infix "-" := Rminus : R_scope.
Infix "×" := Rmult : R_scope.
Notation "/ x" := (Rinv (pr1 x) (pr2 x)) : R_scope.
Notation "x / y" := (Rdiv x (pr1 y) (pr2 y)) : R_scope.

NRNRtoR and RtoNRNR


Lemma NRNRtoR_RtoNRNR :
   x : Reals, NRNRtoR (pr1 (RtoNRNR x)) (pr2 (RtoNRNR x)) = x.
Proof.
  intros X.
  unfold NRNRtoR.
  apply hr_to_NR_bij.
Qed.

Lemma RtoNRNR_NRNRtoR :
   x y : NonnegativeReals,
    (RtoNRNR (NRNRtoR x y)) = ((x - y)%NR ,, (y - x)%NR).
Proof.
  intros X Y.
  unfold RtoNRNR, NRNRtoR.
  unfold hr_to_NR, NR_to_hr.
  now rewrite setquotunivcomm.
Qed.

Lemma NRNRtoR_inside :
   x y : NonnegativeReals, pr1 (NRNRtoR x y) (x,,y).
Proof.
  intros x y.
  apply hinhpr.
   0%NR ; simpl.
  reflexivity.
Qed.

Lemma NRNRtoR_zero :
  NRNRtoR 0%NR 0%NR = 0.
Proof.
  unfold NRNRtoR, NR_to_hr.
  refine (setquotl0 _ 0 (_,,_)).
  apply hinhpr.
   0%NR ; simpl.
  reflexivity.
Qed.
Lemma NRNRtoR_one :
  NRNRtoR 1%NR 0%NR = 1.
Proof.
  unfold NRNRtoR, NR_to_hr.
  refine (setquotl0 _ 1 (_,,_)).
  apply hinhpr.
   0%NR ; simpl.
  reflexivity.
Qed.

Lemma NRNRtoR_eq :
   x x' y y' : NonnegativeReals,
    (x + y' = x' + y)%NR
    NRNRtoR x y = NRNRtoR x' y'.
Proof.
  intros x x' y y'.
  apply (NR_to_hr_eq (x,,y) (x' ,, y')).
Qed.
Lemma NRNRtoR_ap :
   x x' y y' : NonnegativeReals,
    (x + y' x' + y)%NR
    NRNRtoR x y NRNRtoR x' y'.
Proof.
  intros x x' y y'.
  apply (NR_to_hr_ap (x,,y) (x' ,, y')).
Qed.
Lemma NRNRtoR_lt :
   x x' y y' : NonnegativeReals,
    (x + y' < x' + y)%NR
    NRNRtoR x y < NRNRtoR x' y'.
Proof.
  intros x x' y y'.
  apply (NR_to_hr_lt (x,,y) (x' ,, y')).
Qed.
Lemma NRNRtoR_le :
   x x' y y' : NonnegativeReals,
    (x + y' x' + y)%NR
    NRNRtoR x y NRNRtoR x' y'.
Proof.
  intros x x' y y'.
  apply (NR_to_hr_le (x,,y) (x' ,, y')).
Qed.

Lemma NRNRtoR_plus :
   x x' y y' : NonnegativeReals, NRNRtoR (x + x')%NR (y + y')%NR = NRNRtoR x y + NRNRtoR x' y'.
Proof.
  intros x x' y y'.
  apply pathsinv0, NR_to_hr_plus.
Qed.
Lemma NRNRtoR_opp :
   x y : NonnegativeReals, NRNRtoR y x = - NRNRtoR x y.
Proof.
  intros x y.
  apply pathsinv0, NR_to_hr_opp.
Qed.
Lemma NRNRtoR_minus :
   x x' y y' : NonnegativeReals, NRNRtoR (x + y')%NR (y + x')%NR = NRNRtoR x y - NRNRtoR x' y'.
Proof.
  intros x x' y y'.
  apply pathsinv0, NR_to_hr_minus.
Qed.
Lemma NRNRtoR_mult :
   x x' y y' : NonnegativeReals, NRNRtoR (x × x' + y × y')%NR (x × y' + y × x')%NR = NRNRtoR x y × NRNRtoR x' y'.
Proof.
  intros x x' y y'.
  apply pathsinv0, NR_to_hr_mult.
Qed.
Lemma NRNRtoR_inv_pos :
   (x : NonnegativeReals) Hrn Hr,
    NRNRtoR (invNonnegativeReals x Hrn) 0%NR = Rinv (NRNRtoR x 0%NR) Hr.
Proof.
  intros x Hrn Hr.
  rewrite <- (isrunit_CFone_CFmult (NRNRtoR (invNonnegativeReals x Hrn) 0%NR)), <- (isrunit_CFone_CFmult (Rinv (NRNRtoR x 0%NR) Hr)).
  rewrite <- (isrinv_CFinv (X := Reals) (NRNRtoR x 0%NR) Hr).
  rewrite <- !(isassoc_CFmult (X := Reals)).
  apply (maponpaths (λ x, (x × _)%CF)).
  rewrite <- NRNRtoR_mult.
  unfold Rinv.
  rewrite (islinv_CFinv (X := Reals) (NRNRtoR x 0%NR) Hr).
  rewrite !israbsorb_zero_multNonnegativeReals, islabsorb_zero_multNonnegativeReals.
  rewrite !isrunit_zero_plusNonnegativeReals.
  rewrite islinv_invNonnegativeReals.
  apply NRNRtoR_one.
Qed.
Lemma NRNRtoR_inv_neg :
   (x : NonnegativeReals) Hrn Hr,
    NRNRtoR 0%NR (invNonnegativeReals x Hrn) = Rinv (NRNRtoR 0%NR x) Hr.
Proof.
  intros x Hrn Hr.
  rewrite <- (isrunit_CFone_CFmult (NRNRtoR 0%NR (invNonnegativeReals x Hrn))), <- (isrunit_CFone_CFmult (Rinv (NRNRtoR 0%NR x) Hr)).
  rewrite <- (isrinv_CFinv (X := Reals) (NRNRtoR 0%NR x) Hr).
  rewrite <- !(isassoc_CFmult (X := Reals)).
  apply (maponpaths (λ x, (x × _)%CF)).
  rewrite <- NRNRtoR_mult.
  unfold Rinv.
  rewrite (islinv_CFinv (X := Reals) (NRNRtoR 0%NR x) Hr).
  rewrite !israbsorb_zero_multNonnegativeReals, islabsorb_zero_multNonnegativeReals.
  rewrite !islunit_zero_plusNonnegativeReals.
  rewrite islinv_invNonnegativeReals.
  apply NRNRtoR_one.
Qed.

Lemma Rabs_pr1RtoNRNR :
   x : Reals,
    (pr1 (RtoNRNR x) Rabs x)%NR.
Proof.
  intros x.
  rewrite <- (NRNRtoR_RtoNRNR x).
  generalize (pr1 (RtoNRNR x)) (pr2 (RtoNRNR x)) ; clear x ; intros x y ; simpl.
  apply maxNonnegativeReals_le_l.
Qed.
Lemma Rabs_pr2RtoNRNR :
   x : Reals,
    (pr2 (RtoNRNR x) Rabs x)%NR.
Proof.
  intros x.
  rewrite <- (NRNRtoR_RtoNRNR x).
  generalize (pr1 (RtoNRNR x)) (pr2 (RtoNRNR x)) ; clear x ; intros x y ; simpl.
  apply maxNonnegativeReals_le_r.
Qed.

Theorems about apartness and order


Lemma ispositive_Rone : 0 < 1.
Proof.
  rewrite <- NRNRtoR_zero, <- NRNRtoR_one.
  apply NRNRtoR_lt.
  rewrite !isrunit_zero_plusNonnegativeReals.
  apply ispositive_apNonnegativeReals.
  apply isnonzeroNonnegativeReals.
Qed.

Lemma isirrefl_Rlt :
   x : Reals, ¬ (x < x).
Proof.
  exact (pr2 (pr2 isStrongOrder_hr_lt)).
Qed.
Lemma istrans_Rlt :
   x y z : Reals, x < y y < z x < z.
Proof.
  exact (pr1 isStrongOrder_hr_lt).
Qed.
Lemma iscotrans_Rlt :
   (x y z : Reals), (x < z) (x < y) (y < z).
Proof.
  exact iscotrans_hr_lt.
Qed.

Lemma Rplus_ltcompat_l:
   x y z : Reals, y < z (y + x) < (z + x).
Proof.
  exact hr_plus_ltcompat_l.
Qed.
Lemma Rplus_ltcompat_r:
   x y z : Reals, y < z (x + y) < (x + z).
Proof.
  exact hr_plus_ltcompat_r.
Qed.
Lemma Rmult_ltcompat_l:
   x y z : Reals,
    0 < x y < z (y × x) < (z × x).
Proof.
  exact hr_mult_ltcompat_l.
Qed.
Lemma Rmult_ltcompat_l':
   x y z : Reals,
    0 x (y × x) < (z × x) y < z.
Proof.
  exact hr_mult_ltcompat_l'.
Qed.
Lemma Rmult_ltcompat_r:
   x y z : Reals,
    0 < x y < z (x × y) < (x × z).
Proof.
  intros x y z.
  rewrite !(iscomm_CFmult x).
  now apply Rmult_ltcompat_l.
Qed.
Lemma Rmult_ltcompat_r':
   x y z : Reals,
    0 x (x × y) < (x × z) y < z.
Proof.
  exact hr_mult_ltcompat_r'.
Qed.

Lemma Rarchimedean:
   x : Reals, n : nat, x < nattoring n.
Proof.
  exact hr_archimedean.
Qed.

Lemma notRlt_Rle :
   x y : Reals, ¬ (x < y) (y x).
Proof.
  exact hr_notlt_le.
Qed.
Lemma Rlt_Rle :
   x y : Reals, x < y x y.
Proof.
  intros x y H.
  apply notRlt_Rle.
  intros H0.
  refine (isirrefl_Rlt _ _).
  refine (istrans_Rlt _ _ _ _ _).
  exact H.
  exact H0.
Qed.
Lemma isantisymm_Rle :
   x y : Reals, x y y x x = y.
Proof.
  exact isantisymm_hr_le.
Qed.
Lemma istrans_Rle :
   x y z : Reals, x y y z x z.
Proof.
  intros x y z Hxy Hyz.
  apply notRlt_Rle ; intro H.
  generalize (iscotrans_Rlt _ y _ H).
  apply hinhuniv'.
  exact isapropempty.
  apply sumofmaps.
  + apply_pr2 notRlt_Rle.
    exact Hyz.
  + apply_pr2 notRlt_Rle.
    exact Hxy.
Qed.
Lemma istrans_Rle_lt :
   x y z : Reals, x y y < z x < z.
Proof.
  intros x y z Hxy Hyz.
  generalize (iscotrans_Rlt _ x _ Hyz).
  apply hinhuniv.
  apply sumofmaps ; intros H.
  apply fromempty.
  revert H.
  apply_pr2 notRlt_Rle.
  exact Hxy.
  exact H.
Qed.
Lemma istrans_Rlt_le :
   x y z : Reals, x < y y z x < z.
Proof.
  intros x y z Hxy Hyz.
  generalize (iscotrans_Rlt _ z _ Hxy).
  apply hinhuniv.
  apply sumofmaps ; intros H.
  exact H.
  apply fromempty.
  revert H.
  apply_pr2 notRlt_Rle.
  exact Hyz.
Qed.

Lemma Rplus_lecompat_l:
   x y z : Reals, y z (y + x) (z + x).
Proof.
  exact hr_plus_lecompat_l.
Qed.
Lemma Rplus_lecompat_r:
   x y z : Reals, y z (x + y) (x + z).
Proof.
  exact hr_plus_lecompat_r.
Qed.
Lemma Rmult_lecompat_l:
   x y z : Reals,
    0 x y z (y × x) (z × x).
Proof.
  exact hr_mult_lecompat_l.
Qed.
Lemma Rmult_lecompat_l':
   x y z : Reals,
    0 < x (y × x) (z × x) y z.
Proof.
  exact hr_mult_lecompat_l'.
Qed.
Lemma Rmult_lecompat_r:
   x y z : Reals,
    0 x y z (x × y) (x × z).
Proof.
  exact hr_mult_lecompat_r.
Qed.
Lemma Rmult_lecompat_r':
   x y z : Reals,
    0 < x (x × y) (x × z) y z.
Proof.
  exact hr_mult_lecompat_r'.
Qed.

Lemma Rap_Rlt:
   x y : Reals, x y (x < y) ⨿ (y < x).
Proof.
  exact hr_ap_lt.
Qed.

Lemma isnonzeroReals : (1 0).
Proof.
  exact isnonzeroCF.
Qed.

Lemma isirrefl_Rap :
   x : Reals, ¬ (x x).
Proof.
  exact isirrefl_CFap.
Qed.
Lemma issymm_Rap :
   (x y : Reals), (x y) (y x).
Proof.
  exact issymm_CFap.
Qed.
Lemma iscotrans_Rap :
   (x y z : Reals), (x z) (x y) (y z).
Proof.
  exact iscotrans_CFap.
Qed.
Lemma istight_Rap :
   (x y : Reals), ¬ (x y) x = y.
Proof.
  exact istight_CFap.
Qed.

Lemma apRplus :
   (x x' y y' : Reals),
    (x + y x' + y') (x x') (y y').
Proof.
  exact apCFplus.
Qed.
Lemma Rplus_apcompat_l :
   x y z : Reals,
    y + x z + x y z.
Proof.
  exact CFplus_apcompat_l.
Qed.
Lemma Rplus_apcompat_r :
   x y z : Reals,
    x + y x + z y z.
Proof.
  exact CFplus_apcompat_r.
Qed.

Lemma apRmult:
   (x x' y y' : Reals),
  (x × y x' × y') (x x') (y y').
Proof.
  apply apCFmult.
Qed.
Lemma Rmult_apcompat_l:
   (x y z : Reals), (y × x z × x) (y z).
Proof.
  exact CFmult_apcompat_l.
Qed.
Lemma Rmult_apcompat_l':
   (x y z : Reals),
    (x 0) (y z) (y × x z × x).
Proof.
  exact CFmult_apcompat_l'.
Qed.
Lemma Rmult_apcompat_r:
   (x y z : Reals), (x × y x × z) (y z).
Proof.
  exact CFmult_apcompat_r.
Qed.
Lemma Rmult_apcompat_r':
   (x y z : Reals),
    (x 0) (y z) (x × y x × z).
Proof.
  exact CFmult_apcompat_r'.
Qed.
Lemma RmultapRzero:
   (x y : Reals),
    (x × y 0) (x 0) (y 0).
Proof.
  exact CFmultapCFzero.
Qed.

Algrebra


Lemma islunit_Rzero_Rplus :
   x : Reals, 0 + x = x.
Proof.
  exact islunit_CFzero_CFplus.
Qed.
Lemma isrunit_Rzero_Rplus :
   x : Reals, x + 0 = x.
Proof.
  exact isrunit_CFzero_CFplus.
Qed.
Lemma isassoc_Rplus :
   x y z : Reals, x + y + z = x + (y + z).
Proof.
  exact isassoc_CFplus.
Qed.
Lemma islinv_Ropp :
   x : Reals, - x + x = 0.
Proof.
  exact islinv_CFopp.
Qed.
Lemma isrinv_Ropp :
   x : Reals, x + - x = 0.
Proof.
  exact isrinv_CFopp.
Qed.

Lemma iscomm_Rplus :
   x y : Reals, x + y = y + x.
Proof.
  exact iscomm_CFplus.
Qed.
Lemma islunit_Rone_Rmult :
   x : Reals, 1 × x = x.
Proof.
  exact islunit_CFone_CFmult.
Qed.
Lemma isrunit_Rone_Rmult :
   x : Reals, x × 1 = x.
Proof.
  exact isrunit_CFone_CFmult.
Qed.
Lemma isassoc_Rmult :
   x y z : Reals, x × y × z = x × (y × z).
Proof.
  exact isassoc_CFmult.
Qed.
Lemma iscomm_Rmult :
   x y : Reals, x × y = y × x.
Proof.
  exact iscomm_CFmult.
Qed.
Lemma islinv_Rinv :
   (x : Reals) (Hx0 : x 0),
    (Rinv x Hx0) × x = 1.
Proof.
  exact islinv_CFinv.
Qed.
Lemma isrinv_Rinv :
   (x : Reals) (Hx0 : x 0),
    x × (Rinv x Hx0) = 1.
Proof.
  exact isrinv_CFinv.
Qed.
Lemma islabsorb_Rzero_Rmult :
   x : Reals, 0 × x = 0.
Proof.
  exact islabsorb_CFzero_CFmult.
Qed.
Lemma israbsorb_Rzero_Rmult :
   x : Reals, x × 0 = 0.
Proof.
  exact israbsorb_CFzero_CFmult.
Qed.
Lemma isldistr_Rplus_Rmult :
   x y z : Reals, z × (x + y) = z × x + z × y.
Proof.
  exact isldistr_CFplus_CFmult.
Qed.
Lemma isrdistr_Rplus_Rmult :
   x y z : Reals, (x + y) × z = x × z + y × z.
Proof.
  exact isrdistr_CFplus_CFmult.
Qed.

Rabs


Lemma istriangle_Rabs :
   x y : Reals, (Rabs (x + y)%R Rabs x + Rabs y)%NR.
Proof.
  exact istriangle_hr_abs.
Qed.
Lemma istriangle_Rabs' :
   x y : Reals, (Rabs x - Rabs y Rabs (x + y)%R)%NR.
Proof.
  exact istriangle_hr_abs'.
Qed.

Lemma Rabs_Rmult :
   x y : Reals, (Rabs (x × y)%R = Rabs x × Rabs y)%NR.
Proof.
  exact hr_abs_mult.
Qed.

Lemma Rabs_Ropp :
   x : Reals, (Rabs (- x)%R = Rabs x).
Proof.
  intros x.
  rewrite <- (NRNRtoR_RtoNRNR x).
  apply iscomm_maxNonnegativeReals.
Qed.