Library UniMath.RealNumbers.NonnegativeReals
Require Import UniMath.MoreFoundations.Tactics.
Require Import UniMath.RealNumbers.Sets.
Require Export UniMath.Algebra.ConstructiveStructures.
Require Import UniMath.RealNumbers.Prelim.
Require Import UniMath.RealNumbers.NonnegativeRationals.
Delimit Scope Dcuts_scope with Dcuts.
Local Open Scope NRat_scope.
Local Open Scope Dcuts_scope.
Local Open Scope tap_scope.
Definition Dcuts_def_bot (X : hsubtype NonnegativeRationals) : UU :=
∏ x : NonnegativeRationals,
X x → ∏ y : NonnegativeRationals, y ≤ x → X y.
Definition Dcuts_def_open (X : hsubtype NonnegativeRationals) : UU :=
∏ x : NonnegativeRationals,
X x → ∃ y : NonnegativeRationals, (X y) × (x < y).
Definition Dcuts_def_finite (X : hsubtype NonnegativeRationals) : hProp :=
∃ ub : NonnegativeRationals, ¬ (X ub).
Definition Dcuts_def_corr (X : hsubtype NonnegativeRationals) : UU :=
∏ r : NonnegativeRationals, 0 < r → (¬ (X r)) ∨ ∑ q : NonnegativeRationals, (X q) × (¬ (X (q + r))).
Lemma Dcuts_def_corr_finite (X : hsubtype NonnegativeRationals) :
Dcuts_def_corr X → Dcuts_def_finite X.
Proof.
intros Hx.
specialize (Hx _ ispositive_oneNonnegativeRationals).
revert Hx ; apply hinhuniv ; apply sumofmaps ; [intros Hx | intros x].
- apply hinhpr.
∃ 1 ; exact Hx.
- apply hinhpr ; ∃ (pr1 x + 1) ; exact (pr2 (pr2 x)).
Qed.
Lemma Dcuts_def_corr_not_empty (X : hsubtype NonnegativeRationals) :
X 0 → Dcuts_def_corr X →
∏ c : NonnegativeRationals,
(0 < c)%NRat → ∃ x : NonnegativeRationals, X x × ¬ X (x + c).
Proof.
intros X0 Hx c Hc.
generalize (Hx c Hc).
apply hinhuniv ; apply sumofmaps ; [intros nXc | intros Hx' ].
- apply hinhpr ; ∃ 0%NRat ; split.
exact X0.
rewrite islunit_zeroNonnegativeRationals.
exact nXc.
- apply hinhpr ; exact Hx'.
Qed.
Lemma isaprop_Dcuts_def_bot (X : hsubtype NonnegativeRationals) : isaprop (Dcuts_def_bot X).
Proof.
repeat (apply impred_isaprop ; intro).
now apply pr2.
Qed.
Lemma isaprop_Dcuts_def_open (X : hsubtype NonnegativeRationals) : isaprop (Dcuts_def_open X).
Proof.
repeat (apply impred_isaprop ; intro).
now apply pr2.
Qed.
Lemma isaprop_Dcuts_def_corr (X : hsubtype NonnegativeRationals) : isaprop (Dcuts_def_corr X).
Proof.
repeat (apply impred_isaprop ; intro).
now apply pr2.
Qed.
Lemma isaprop_Dcuts_hsubtype (X : hsubtype NonnegativeRationals) :
isaprop (Dcuts_def_bot X × Dcuts_def_open X × Dcuts_def_corr X).
Proof.
apply isofhleveldirprod, isofhleveldirprod.
- exact (isaprop_Dcuts_def_bot X).
- exact (isaprop_Dcuts_def_open X).
- exact (isaprop_Dcuts_def_corr X).
Qed.
Definition Dcuts_hsubtype : hsubtype (hsubtype NonnegativeRationals) :=
λ X : hsubtype NonnegativeRationals, hProppair _ (isaprop_Dcuts_hsubtype X).
Lemma isaset_Dcuts : isaset (carrier Dcuts_hsubtype).
Proof.
apply isasetsubset with pr1.
apply isasethsubtype.
apply isinclpr1.
intro x.
apply pr2.
Qed.
Definition Dcuts_set : hSet := hSetpair _ isaset_Dcuts.
Definition pr1Dcuts (x : Dcuts_set) : hsubtype NonnegativeRationals := pr1 x.
Notation "x ∈ X" := (pr1Dcuts X x) (at level 70, no associativity) : DC_scope.
Local Open Scope DC_scope.
Lemma is_Dcuts_bot (X : Dcuts_set) : Dcuts_def_bot (pr1 X).
Proof.
exact (pr1 (pr2 X)).
Qed.
Lemma is_Dcuts_open (X : Dcuts_set) : Dcuts_def_open (pr1 X).
Proof.
exact (pr1 (pr2 (pr2 X))).
Qed.
Lemma is_Dcuts_corr (X : Dcuts_set) : Dcuts_def_corr (pr1 X).
Proof.
exact (pr2 (pr2 (pr2 X))).
Qed.
Definition mk_Dcuts (X : NonnegativeRationals → hProp)
(Hbot : Dcuts_def_bot X)
(Hopen : Dcuts_def_open X)
(Herror : Dcuts_def_corr X) : Dcuts_set.
Proof.
∃ X ; repeat split.
now apply Hbot.
now apply Hopen.
now apply Herror.
Defined.
Lemma Dcuts_finite :
∏ X : Dcuts_set, ∏ r : NonnegativeRationals,
neg (r ∈ X) → ∏ n : NonnegativeRationals, n ∈ X → n < r.
Proof.
intros X r Hr n Hn.
apply notge_ltNonnegativeRationals ; intro Hn'.
apply Hr.
apply is_Dcuts_bot with n.
exact Hn.
exact Hn'.
Qed.
Definition Dcuts_le_rel : hrel Dcuts_set :=
λ X Y : Dcuts_set,
hProppair (∏ x : NonnegativeRationals, x ∈ X → x ∈ Y)
(impred_isaprop _ (λ _, isapropimpl _ _ (pr2 _))).
Lemma istrans_Dcuts_le_rel : istrans Dcuts_le_rel.
Proof.
intros x y z Hxy Hyz r Xr.
refine (Hyz _ _). now refine (Hxy _ _).
Qed.
Lemma isrefl_Dcuts_le_rel : isrefl Dcuts_le_rel.
Proof.
now intros X x Xx.
Qed.
Lemma ispreorder_Dcuts_le_rel : ispreorder Dcuts_le_rel.
Proof.
split.
exact istrans_Dcuts_le_rel.
exact isrefl_Dcuts_le_rel.
Qed.
Strict partial order on Dcuts
Definition Dcuts_lt_rel : hrel Dcuts_set :=
λ (X Y : Dcuts_set),
∃ x : NonnegativeRationals, dirprod (neg (x ∈ X)) (x ∈ Y).
Lemma istrans_Dcuts_lt_rel : istrans Dcuts_lt_rel.
Proof.
intros x y z.
apply hinhfun2.
intros r n.
∃ (pr1 r) ; split.
exact (pr1 (pr2 r)).
apply is_Dcuts_bot with (pr1 n).
exact (pr2 (pr2 n)).
apply lt_leNonnegativeRationals.
apply Dcuts_finite with y.
exact (pr1 (pr2 n)).
exact (pr2 (pr2 r)).
Qed.
Lemma isirrefl_Dcuts_lt_rel : isirrefl Dcuts_lt_rel.
Proof.
intros x.
unfold neg ;
apply (hinhuniv (P := hProppair _ isapropempty)).
intros r.
apply (pr1 (pr2 r)).
exact (pr2 (pr2 r)).
Qed.
Lemma iscotrans_Dcuts_lt_rel :
iscotrans Dcuts_lt_rel.
Proof.
intros x y z.
apply hinhuniv ; intros r.
generalize (is_Dcuts_open _ _ (pr2 (pr2 r))) ; apply hinhuniv ; intros r'.
assert (Hr0 : 0%NRat < pr1 r' - pr1 r).
{ apply ispositive_minusNonnegativeRationals.
exact (pr2 (pr2 r')). }
generalize (is_Dcuts_corr y _ Hr0) ; apply hinhuniv ; apply sumofmaps ; [intros Yq | intros q].
- apply Utilities.squash_element ;
right ; apply Utilities.squash_element.
∃ (pr1 r') ; split.
+ intro H0 ; apply Yq.
apply is_Dcuts_bot with (pr1 r').
exact H0.
now apply minusNonnegativeRationals_le.
+ exact (pr1 (pr2 r')).
- generalize (isdecrel_leNonnegativeRationals (pr1 q + (pr1 r' - pr1 r)) (pr1 r')) ; apply sumofmaps ; intros Hdec.
+ apply hinhpr ; right ; apply hinhpr.
∃ (pr1 r') ; split.
intro Yr' ; apply (pr2 (pr2 q)).
apply is_Dcuts_bot with (pr1 r').
exact Yr'.
exact Hdec.
exact (pr1 (pr2 r')).
+ apply hinhpr ; left ; apply hinhpr.
∃ (pr1 q) ; split.
× intro Xq ; apply (pr1 (pr2 r)).
apply is_Dcuts_bot with (pr1 q).
exact Xq.
apply notge_ltNonnegativeRationals in Hdec.
apply (plusNonnegativeRationals_ltcompat_r (pr1 r)) in Hdec ;
rewrite isassoc_plusNonnegativeRationals, minusNonnegativeRationals_plus_r, iscomm_plusNonnegativeRationals in Hdec.
apply_pr2_in plusNonnegativeRationals_ltcompat_r Hdec.
now apply lt_leNonnegativeRationals, Hdec.
now apply lt_leNonnegativeRationals, (pr2 (pr2 r')).
× exact (pr1 (pr2 q)).
Qed.
Lemma isstpo_Dcuts_lt_rel : isStrongOrder Dcuts_lt_rel.
Proof.
repeat split.
exact istrans_Dcuts_lt_rel.
exact iscotrans_Dcuts_lt_rel.
exact isirrefl_Dcuts_lt_rel.
Qed.
Effectively Ordered Set
Lemma Dcuts_lt_le_rel :
∏ x y : Dcuts_set, Dcuts_lt_rel x y → Dcuts_le_rel x y.
Proof.
intros x y ; apply hinhuniv ; intros r.
intros n Xn.
apply is_Dcuts_bot with (pr1 r).
exact (pr2 (pr2 r)).
apply lt_leNonnegativeRationals.
apply Dcuts_finite with x.
exact (pr1 (pr2 r)).
exact Xn.
Qed.
Lemma Dcuts_le_ngt_rel :
∏ x y : Dcuts_set, ¬ Dcuts_lt_rel x y ↔ Dcuts_le_rel y x.
Proof.
intros X Y.
split.
- intros Hnlt y Yy.
generalize (is_Dcuts_open _ _ Yy) ; apply hinhuniv ; intros y'.
generalize (pr1 (ispositive_minusNonnegativeRationals _ _) (pr2 (pr2 y'))) ; intros Hy.
generalize (is_Dcuts_corr X _ Hy).
apply hinhuniv.
apply sumofmaps ; [intros nXc | ].
+ apply fromempty, Hnlt.
apply hinhpr.
∃ (pr1 y') ; split.
× intro Xy' ; apply nXc.
apply is_Dcuts_bot with (1 := Xy').
now apply minusNonnegativeRationals_le.
× exact (pr1 (pr2 y')).
+ intros x.
apply is_Dcuts_bot with (1 := pr1 (pr2 x)).
apply notlt_geNonnegativeRationals ; intro H ; apply Hnlt.
apply hinhpr.
∃ (pr1 x + (pr1 y' - y)) ; split.
× exact (pr2 (pr2 x)).
× apply is_Dcuts_bot with (1 := pr1 (pr2 y')).
pattern (pr1 y') at 2;
rewrite <- (minusNonnegativeRationals_plus_r y (pr1 y')).
rewrite iscomm_plusNonnegativeRationals.
apply plusNonnegativeRationals_lecompat_l.
now apply lt_leNonnegativeRationals, H.
apply lt_leNonnegativeRationals ; apply_pr2 ispositive_minusNonnegativeRationals.
exact Hy.
- intros Hxy ; unfold neg.
apply (hinhuniv (P := hProppair _ isapropempty)) ;
intros r.
refine (pr1 (pr2 r) _).
refine (Hxy _ _).
exact (pr2 (pr2 r)).
Qed.
Lemma istrans_Dcuts_lt_le_rel :
∏ x y z : Dcuts_set, Dcuts_lt_rel x y → Dcuts_le_rel y z → Dcuts_lt_rel x z.
Proof.
intros x y z Hlt Hle.
revert Hlt ; apply hinhfun ; intros r.
∃ (pr1 r) ; split.
- exact (pr1 (pr2 r)).
- refine (Hle _ _).
exact (pr2 (pr2 r)).
Qed.
Lemma istrans_Dcuts_le_lt_rel :
∏ x y z : Dcuts_set, Dcuts_le_rel x y → Dcuts_lt_rel y z → Dcuts_lt_rel x z.
Proof.
intros x y z Hle.
apply hinhfun ; intros r.
∃ (pr1 r) ; split.
- intros Xr ; apply (pr1 (pr2 r)).
now refine (Hle _ _).
- exact (pr2 (pr2 r)).
Qed.
Lemma iseo_Dcuts_le_lt_rel :
isEffectiveOrder Dcuts_le_rel Dcuts_lt_rel.
Proof.
split.
- split.
+ exact ispreorder_Dcuts_le_rel.
+ exact isstpo_Dcuts_lt_rel.
- repeat split.
+ now apply Dcuts_le_ngt_rel.
+ apply (pr2 (Dcuts_le_ngt_rel _ _)).
+ exact istrans_Dcuts_lt_le_rel.
+ exact istrans_Dcuts_le_lt_rel.
Qed.
Definition iseo_Dcuts : EffectiveOrder Dcuts_set :=
pairEffectiveOrder Dcuts_le_rel Dcuts_lt_rel iseo_Dcuts_le_lt_rel.
Definition eo_Dcuts : EffectivelyOrderedSet :=
pairEffectivelyOrderedSet iseo_Dcuts.
Definition Dcuts_le : po Dcuts_set := @EOle eo_Dcuts.
Definition Dcuts_ge : po Dcuts_set := @EOge eo_Dcuts.
Definition Dcuts_lt : StrongOrder Dcuts_set := @EOlt eo_Dcuts.
Definition Dcuts_gt : StrongOrder Dcuts_set := @EOgt eo_Dcuts.
Notation "x <= y" := (@EOle_rel eo_Dcuts x y) : Dcuts_scope.
Notation "x >= y" := (@EOge_rel eo_Dcuts x y) : Dcuts_scope.
Notation "x < y" := (@EOlt_rel eo_Dcuts x y) : Dcuts_scope.
Notation "x > y" := (@EOgt_rel eo_Dcuts x y) : Dcuts_scope.
Equivalence on Dcuts
Definition Dcuts_eq_rel :=
λ X Y : Dcuts_set, ∏ r : NonnegativeRationals, (r ∈ X → r ∈ Y) × (r ∈ Y → r ∈ X).
Lemma isaprop_Dcuts_eq_rel : ∏ X Y : Dcuts_set, isaprop (Dcuts_eq_rel X Y).
Proof.
intros X Y.
apply impred_isaprop ; intro r.
apply isapropdirprod.
- now apply isapropimpl, pr2.
- now apply isapropimpl, pr2.
Qed.
Definition Dcuts_eq : hrel Dcuts_set :=
λ X Y : Dcuts_set, hProppair (∏ r, (r ∈ X → r ∈ Y) × (r ∈ Y → r ∈ X)) (isaprop_Dcuts_eq_rel X Y).
Lemma istrans_Dcuts_eq : istrans Dcuts_eq.
Proof.
intros x y z Hxy Hyz r.
split.
- intros Xr.
now apply (pr1 (Hyz r)), (pr1 (Hxy r)), Xr.
- intros Zr.
now apply (pr2 (Hxy r)), (pr2 (Hyz r)), Zr.
Qed.
Lemma isrefl_Dcuts_eq : isrefl Dcuts_eq.
Proof.
intros x r.
now split.
Qed.
Lemma ispreorder_Dcuts_eq : ispreorder Dcuts_eq.
Proof.
split.
exact istrans_Dcuts_eq.
exact isrefl_Dcuts_eq.
Qed.
Lemma issymm_Dcuts_eq : issymm Dcuts_eq.
Proof.
intros x y Hxy r.
split.
exact (pr2 (Hxy r)).
exact (pr1 (Hxy r)).
Qed.
Lemma iseqrel_Dcuts_eq : iseqrel Dcuts_eq.
Proof.
split.
exact ispreorder_Dcuts_eq.
exact issymm_Dcuts_eq.
Qed.
Lemma Dcuts_eq_is_eq :
∏ x y : Dcuts_set,
Dcuts_eq x y → x = y.
Proof.
intros x y Heq.
apply subtypeEquality_prop.
apply funextsec.
intro r.
apply hPropUnivalence.
exact (pr1 (Heq r)).
exact (pr2 (Heq r)).
Qed.
Apartness on Dcuts
Lemma isaprop_Dcuts_ap_rel (X Y : Dcuts_set) :
isaprop ((X < Y) ⨿ (Y < X)).
Proof.
apply (isapropcoprod (X < Y) (Y < X)
(propproperty (X < Y))
(propproperty (Y < X))
(λ Hlt : X < Y, pr2 (Dcuts_le_ngt_rel Y X) (Dcuts_lt_le_rel X Y Hlt))).
Qed.
Definition Dcuts_ap_rel (X Y : Dcuts_set) : hProp :=
hProppair ((X < Y) ⨿ (Y < X)) (isaprop_Dcuts_ap_rel X Y).
Lemma isirrefl_Dcuts_ap_rel : isirrefl Dcuts_ap_rel.
Proof.
intros x.
unfold neg.
apply sumofmaps.
now apply isirrefl_Dcuts_lt_rel.
now apply isirrefl_Dcuts_lt_rel.
Qed.
Lemma issymm_Dcuts_ap_rel : issymm Dcuts_ap_rel.
Proof.
intros x y.
apply coprodcomm.
Qed.
Lemma iscotrans_Dcuts_ap_rel : iscotrans Dcuts_ap_rel.
Proof.
intros x y z.
apply sumofmaps ; intros Hap.
- generalize (iscotrans_Dcuts_lt_rel _ y _ Hap) ; apply hinhfun.
apply sumofmaps ; intros Hy.
+ now left ; left.
+ now right ; left.
- generalize (iscotrans_Dcuts_lt_rel _ y _ Hap) ; apply hinhfun.
apply sumofmaps ; intros Hy.
+ now right ; right.
+ now left ; right.
Qed.
Lemma istight_Dcuts_ap_rel : istight Dcuts_ap_rel.
Proof.
intros X Y Hap.
apply Dcuts_eq_is_eq.
intros r ; split ; revert r.
- change (X ≤ Y).
apply Dcuts_le_ngt_rel.
intro Hlt ; apply Hap.
now right.
- change (Y ≤ X).
apply Dcuts_le_ngt_rel.
intro Hlt ; apply Hap.
now left.
Qed.
Definition Dcuts : tightapSet :=
Dcuts_set ,, Dcuts_ap_rel ,,
(isirrefl_Dcuts_ap_rel ,, issymm_Dcuts_ap_rel ,, iscotrans_Dcuts_ap_rel) ,,
istight_Dcuts_ap_rel.
Lemma not_Dcuts_ap_eq :
∏ x y : Dcuts, ¬ (x ≠ y) → (x = y).
Proof.
intros x y.
now apply istight_Dcuts_ap_rel.
Qed.
Lemma Dcuts_ge_le :
∏ x y : Dcuts, x ≥ y → y ≤ x.
Proof.
intros.
assumption.
Qed.
Lemma Dcuts_le_ge :
∏ x y : Dcuts, x ≤ y → y ≥ x.
Proof.
intros.
assumption.
Qed.
Lemma Dcuts_eq_le :
∏ x y : Dcuts, Dcuts_eq x y → x ≤ y.
Proof.
intros x y Heq.
intro r ;
now apply (pr1 (Heq _)).
Qed.
Lemma Dcuts_eq_ge :
∏ x y : Dcuts, Dcuts_eq x y → x ≥ y.
Proof.
intros x y Heq.
apply Dcuts_eq_le.
now apply issymm_Dcuts_eq.
Qed.
Lemma Dcuts_le_ge_eq :
∏ x y : Dcuts, x ≤ y → x ≥ y → x = y.
Proof.
intros x y le_xy ge_xy.
apply Dcuts_eq_is_eq.
split.
now refine (le_xy _).
now refine (ge_xy _).
Qed.
Lemma Dcuts_gt_lt :
∏ x y : Dcuts, (x > y) ↔ (y < x).
Proof.
now split.
Qed.
Lemma Dcuts_gt_ge :
∏ x y : Dcuts, x > y → x ≥ y.
Proof.
intros x y.
now apply Dcuts_lt_le_rel.
Qed.
Lemma Dcuts_gt_nle :
∏ x y : Dcuts, x > y → neg (x ≤ y).
Proof.
intros x y Hlt Hle.
now apply (pr2 (Dcuts_le_ngt_rel _ _)) in Hle.
Qed.
Lemma Dcuts_nlt_ge :
∏ x y : Dcuts, neg (x < y) ↔ (x ≥ y).
Proof.
intros X Y.
now apply Dcuts_le_ngt_rel.
Qed.
Lemma Dcuts_lt_nge :
∏ x y : Dcuts, x < y → neg (x ≥ y).
Proof.
intros x y.
now apply Dcuts_gt_nle.
Qed.
Lemma NonnegativeRationals_to_Dcuts_bot (q : NonnegativeRationals) :
Dcuts_def_bot (λ r : NonnegativeRationals, (r < q)%NRat).
Proof.
intros r Hr n Hnr.
now apply istrans_le_lt_ltNonnegativeRationals with r.
Qed.
Lemma NonnegativeRationals_to_Dcuts_open (q : NonnegativeRationals) :
Dcuts_def_open (λ r : NonnegativeRationals, (r < q)%NRat).
Proof.
intros r Hr.
apply hinhpr.
generalize (between_ltNonnegativeRationals r q Hr) ; intros n.
∃ (pr1 n).
split.
exact (pr2 (pr2 n)).
exact (pr1 (pr2 n)).
Qed.
Lemma NonnegativeRationals_to_Dcuts_corr (q : NonnegativeRationals) :
Dcuts_def_corr (λ r : NonnegativeRationals, (r < q)%NRat).
Proof.
intros r Hr0.
apply hinhpr.
generalize (isdecrel_ltNonnegativeRationals r q) ; apply sumofmaps ; intros Hqr.
- right.
assert (Hn0 : (0 < q - r)%NRat) by (now apply ispositive_minusNonnegativeRationals).
∃ (q - r).
split.
+ apply_pr2 (plusNonnegativeRationals_ltcompat_r r).
rewrite minusNonnegativeRationals_plus_r.
pattern q at 1 ;
rewrite <- isrunit_zeroNonnegativeRationals.
apply plusNonnegativeRationals_ltcompat_l.
exact Hr0.
now apply lt_leNonnegativeRationals, Hqr.
+ rewrite minusNonnegativeRationals_plus_r.
now apply isirrefl_ltNonnegativeRationals.
now apply lt_leNonnegativeRationals, Hqr.
- now left.
Qed.
Definition NonnegativeRationals_to_Dcuts (q : NonnegativeRationals) : Dcuts :=
mk_Dcuts (λ r, (r < q)%NRat)
(NonnegativeRationals_to_Dcuts_bot q)
(NonnegativeRationals_to_Dcuts_open q)
(NonnegativeRationals_to_Dcuts_corr q).
Lemma isapfun_NonnegativeRationals_to_Dcuts_aux :
∏ q q' : NonnegativeRationals,
NonnegativeRationals_to_Dcuts q < NonnegativeRationals_to_Dcuts q'
↔ (q < q')%NRat.
Proof.
intros q q'.
split.
- apply hinhuniv.
intros r.
apply istrans_le_lt_ltNonnegativeRationals with (pr1 r).
+ apply notlt_geNonnegativeRationals.
exact (pr1 (pr2 r)).
+ exact (pr2 (pr2 r)).
- intros H.
apply hinhpr.
∃ q ; split.
now apply (isirrefl_ltNonnegativeRationals q).
exact H.
Qed.
Lemma isapfun_NonnegativeRationals_to_Dcuts :
∏ q q' : NonnegativeRationals,
NonnegativeRationals_to_Dcuts q ≠ NonnegativeRationals_to_Dcuts q'
→ q != q'.
Proof.
intros q q'.
apply sumofmaps ; intros Hap.
now apply ltNonnegativeRationals_noteq, isapfun_NonnegativeRationals_to_Dcuts_aux.
now apply gtNonnegativeRationals_noteq, isapfun_NonnegativeRationals_to_Dcuts_aux.
Qed.
Lemma isapfun_NonnegativeRationals_to_Dcuts' :
∏ q q' : NonnegativeRationals,
q != q'
→ NonnegativeRationals_to_Dcuts q ≠ NonnegativeRationals_to_Dcuts q'.
Proof.
intros q q' H.
apply noteq_ltorgtNonnegativeRationals in H.
induction H as [H | H].
now left ; apply (pr2 (isapfun_NonnegativeRationals_to_Dcuts_aux _ _)).
now right ; apply (pr2 (isapfun_NonnegativeRationals_to_Dcuts_aux _ _)).
Qed.
Definition Dcuts_zero : Dcuts := NonnegativeRationals_to_Dcuts 0%NRat.
Definition Dcuts_one : Dcuts := NonnegativeRationals_to_Dcuts 1%NRat.
Definition Dcuts_two : Dcuts := NonnegativeRationals_to_Dcuts 2.
Notation "0" := Dcuts_zero : Dcuts_scope.
Notation "1" := Dcuts_one : Dcuts_scope.
Notation "2" := Dcuts_two : Dcuts_scope.
Various usefull theorems
Lemma Dcuts_zero_empty :
∏ r : NonnegativeRationals, neg (r ∈ 0).
Proof.
intros r ; simpl.
change (neg (r < 0)%NRat).
now apply isnonnegative_NonnegativeRationals'.
Qed.
Lemma Dcuts_notempty_notzero :
∏ (x : Dcuts) (r : NonnegativeRationals), r ∈ x → x ≠ 0.
Proof.
intros x r Hx.
right.
apply hinhpr.
∃ r.
split.
now apply Dcuts_zero_empty.
exact Hx.
Qed.
Lemma Dcuts_ge_0 :
∏ x : Dcuts, Dcuts_zero ≤ x.
Proof.
intros x r Hr.
apply fromempty.
revert Hr.
now apply Dcuts_zero_empty.
Qed.
Lemma Dcuts_notlt_0 :
∏ x : Dcuts, ¬ (x < Dcuts_zero).
Proof.
intros x.
unfold neg.
apply hinhuniv'.
exact isapropempty.
intros r.
exact (Dcuts_zero_empty _ (pr2 (pr2 r))).
Qed.
Lemma Dcuts_apzero_notempty :
∏ (x : Dcuts), (0%NRat ∈ x) ↔ x ≠ 0.
Proof.
intros x ; split.
- now apply Dcuts_notempty_notzero.
- apply sumofmaps.
+ apply hinhuniv ; intros r.
apply fromempty.
now apply (Dcuts_zero_empty _ (pr2 (pr2 r))).
+ apply hinhuniv ; intros r.
apply is_Dcuts_bot with (1 := pr2 (pr2 r)).
now apply isnonnegative_NonnegativeRationals.
Qed.
Lemma NonnegativeRationals_to_Dcuts_notin_le :
∏ (x : Dcuts) (r : NonnegativeRationals),
¬ (r ∈ x) → x ≤ NonnegativeRationals_to_Dcuts r.
Proof.
intros x r Hr q Hq.
simpl.
now apply (Dcuts_finite x).
Qed.
Section Dcuts_plus.
Context (X : hsubtype NonnegativeRationals).
Context (X_bot : Dcuts_def_bot X).
Context (X_open : Dcuts_def_open X).
Context (X_corr : Dcuts_def_corr X).
Context (Y : hsubtype NonnegativeRationals).
Context (Y_bot : Dcuts_def_bot Y).
Context (Y_open : Dcuts_def_open Y).
Context (Y_corr : Dcuts_def_corr Y).
Definition Dcuts_plus_val : hsubtype NonnegativeRationals :=
λ r : NonnegativeRationals,
((X r) ⨿ (Y r)) ∨
(∑ xy : NonnegativeRationals × NonnegativeRationals, (r = (pr1 xy + pr2 xy)%NRat) × ((X (pr1 xy)) × (Y (pr2 xy)))).
Lemma Dcuts_plus_bot : Dcuts_def_bot Dcuts_plus_val.
Proof.
intros r Hr n Hn.
revert Hr ; apply hinhfun ;
apply sumofmaps ; [apply sumofmaps ; intros Hr | intros xy].
- left ; left.
now apply X_bot with r.
- left ; right.
now apply Y_bot with r.
- right.
generalize (isdeceq_NonnegativeRationals r 0%NRat) ; apply sumofmaps ; intros Hr0.
+ rewrite Hr0 in Hn.
apply NonnegativeRationals_eq0_le0 in Hn.
∃ (0%NRat,,0%NRat).
rewrite Hn ; simpl.
repeat split.
× now rewrite isrunit_zeroNonnegativeRationals.
× apply X_bot with (1 := pr1 (pr2 (pr2 xy))).
apply isnonnegative_NonnegativeRationals.
× apply Y_bot with (1 := pr2 (pr2 (pr2 xy))).
apply isnonnegative_NonnegativeRationals.
+ set (nx := (pr1 (pr1 xy) × (n / r))%NRat).
set (ny := (pr2 (pr1 xy) × (n / r))%NRat).
∃ (nx,,ny).
repeat split.
× unfold nx,ny ; simpl.
rewrite <- isrdistr_mult_plusNonnegativeRationals, <- (pr1 (pr2 xy)).
rewrite multdivNonnegativeRationals.
reflexivity.
now apply NonnegativeRationals_neq0_gt0.
× apply X_bot with (1 := pr1 (pr2 (pr2 xy))).
apply multNonnegativeRationals_le1_r.
now apply divNonnegativeRationals_le1.
× apply Y_bot with (1 := pr2 (pr2 (pr2 xy))).
apply multNonnegativeRationals_le1_r.
now apply divNonnegativeRationals_le1.
Qed.
Lemma Dcuts_plus_open : Dcuts_def_open Dcuts_plus_val.
Proof.
intros r.
apply hinhuniv, sumofmaps.
- apply sumofmaps ; intro Hr.
+ generalize (X_open r Hr).
apply hinhfun ; intros n.
∃ (pr1 n).
split.
× apply hinhpr ; left ; left.
exact (pr1 (pr2 n)).
× exact (pr2 (pr2 n)).
+ generalize (Y_open r Hr).
apply hinhfun ; intros n.
∃ (pr1 n).
split.
× apply hinhpr ; left ; right.
exact (pr1 (pr2 n)).
× exact (pr2 (pr2 n)).
- intros xy.
generalize (X_open _ (pr1 (pr2 (pr2 xy)))) (Y_open _ (pr2 (pr2 (pr2 xy)))).
apply hinhfun2.
intros nx ny.
∃ (pr1 nx + pr1 ny).
split.
+ apply hinhpr ; right ; ∃ (pr1 nx ,, pr1 ny).
repeat split.
× exact (pr1 (pr2 nx)).
× exact (pr1 (pr2 ny)).
+ pattern r at 1 ;
rewrite (pr1 (pr2 xy)).
apply plusNonnegativeRationals_ltcompat.
exact (pr2 (pr2 nx)).
exact (pr2 (pr2 ny)).
Qed.
Lemma Dcuts_plus_corr : Dcuts_def_corr Dcuts_plus_val.
Proof.
intros c Hc.
apply ispositive_NQhalf in Hc.
generalize (X_corr _ Hc) (Y_corr _ Hc).
apply hinhfun2 ; apply (sumofmaps (Z := _ → _)) ; intros Hx ; apply sumofmaps ; intros Hy.
- left.
unfold neg ; apply (hinhuniv (P := hProppair _ isapropempty)) ; apply sumofmaps.
+ apply sumofmaps ; intros Hz.
× apply Hx.
apply X_bot with (1 := Hz).
pattern c at 2 ; rewrite (NQhalf_double c).
apply plusNonnegativeRationals_le_r.
× apply Hy.
apply Y_bot with (1 := Hz).
pattern c at 2 ; rewrite (NQhalf_double c).
apply plusNonnegativeRationals_le_r.
+ intros xy.
generalize (isdecrel_ltNonnegativeRationals (pr1 (pr1 xy)) (c / 2)%NRat) ;
apply sumofmaps ; intros Hx'.
generalize (isdecrel_ltNonnegativeRationals (pr2 (pr1 xy)) (c / 2)%NRat) ;
apply sumofmaps ; intros Hy'.
× apply (isirrefl_StrongOrder ltNonnegativeRationals c).
pattern c at 2 ; rewrite (NQhalf_double c).
pattern c at 1 ; rewrite (pr1 (pr2 xy)).
apply plusNonnegativeRationals_ltcompat.
exact Hx'.
exact Hy'.
× apply Hy.
apply Y_bot with (1 := pr2 (pr2 (pr2 xy))).
now apply notlt_geNonnegativeRationals ; apply Hy'.
× apply Hx.
apply X_bot with (1 := pr1 (pr2 (pr2 xy))).
now apply notlt_geNonnegativeRationals ; apply Hx'.
- right.
rename Hy into q.
∃ (pr1 q) ; split.
apply hinhpr.
left ; right ; exact (pr1 (pr2 q)).
unfold neg ; apply (hinhuniv (P := hProppair _ isapropempty)) ; apply sumofmaps.
apply sumofmaps ; [intros Xq | intros Yq'].
+ apply Hx ; apply X_bot with (1 := Xq).
pattern c at 2;
rewrite (NQhalf_double c).
rewrite <- isassoc_plusNonnegativeRationals.
apply plusNonnegativeRationals_le_l.
+ apply (pr2 (pr2 q)) ; apply Y_bot with (1 := Yq').
pattern c at 2;
rewrite (NQhalf_double c).
rewrite <- isassoc_plusNonnegativeRationals.
apply plusNonnegativeRationals_le_r.
+ intros xy.
apply (isirrefl_StrongOrder ltNonnegativeRationals (pr1 q + c)).
pattern c at 2;
rewrite (NQhalf_double c).
pattern (pr1 q + c) at 1 ; rewrite (pr1 (pr2 xy)).
rewrite <- isassoc_plusNonnegativeRationals.
rewrite iscomm_plusNonnegativeRationals.
apply plusNonnegativeRationals_ltcompat.
apply notge_ltNonnegativeRationals ; intro H.
apply (pr2 (pr2 q)) ; apply Y_bot with (1 := pr2 (pr2 (pr2 xy))).
exact H.
apply notge_ltNonnegativeRationals ; intro H.
apply Hx ; apply X_bot with (1 := pr1 (pr2 (pr2 xy))).
exact H.
- right.
rename Hx into q.
∃ (pr1 q) ; split.
apply hinhpr.
left ; left ; exact (pr1 (pr2 q)).
unfold neg ; apply (hinhuniv (P := hProppair _ isapropempty)) ; apply sumofmaps.
apply sumofmaps ; [intros Xq' | intros Yq].
+ apply (pr2 (pr2 q)) ; apply X_bot with (1 := Xq').
pattern c at 2;
rewrite (NQhalf_double c).
rewrite <- isassoc_plusNonnegativeRationals.
apply plusNonnegativeRationals_le_r.
+ apply Hy ; apply Y_bot with (1 := Yq).
pattern c at 2;
rewrite (NQhalf_double c).
rewrite <- isassoc_plusNonnegativeRationals.
apply plusNonnegativeRationals_le_l.
+ intros xy.
apply (isirrefl_StrongOrder ltNonnegativeRationals (pr1 q + c)).
pattern c at 2; rewrite (NQhalf_double c).
pattern (pr1 q + c) at 1 ; rewrite (pr1 (pr2 xy)).
rewrite <- isassoc_plusNonnegativeRationals.
apply plusNonnegativeRationals_ltcompat.
apply notge_ltNonnegativeRationals ; intro H.
apply (pr2 (pr2 q)) ; apply X_bot with (1 := pr1 (pr2 (pr2 xy))).
exact H.
apply notge_ltNonnegativeRationals ; intro H.
apply Hy ; apply Y_bot with (1 := pr2 (pr2 (pr2 xy))).
exact H.
- right.
rename Hx into qx ; rename Hy into qy.
∃ (pr1 qx + pr1 qy).
split.
+ apply hinhpr.
right.
∃ (pr1 qx,,pr1 qy) ; repeat split.
× exact (pr1 (pr2 qx)).
× exact (pr1 (pr2 qy)).
+ unfold neg ; apply (hinhuniv (P := hProppair _ isapropempty)) ; apply sumofmaps.
apply sumofmaps ; [ intros Xq' | intros Yq'].
× apply (pr2 (pr2 qx)), X_bot with (1 := Xq').
pattern c at 2;
rewrite (NQhalf_double c).
rewrite <- isassoc_plusNonnegativeRationals.
apply plusNonnegativeRationals_lecompat_r.
rewrite isassoc_plusNonnegativeRationals.
apply plusNonnegativeRationals_le_r.
× apply (pr2 (pr2 qy)), Y_bot with (1 := Yq').
pattern c at 2;
rewrite (NQhalf_double c).
rewrite <- isassoc_plusNonnegativeRationals.
apply plusNonnegativeRationals_lecompat_r.
eapply istrans_leNonnegativeRationals, plusNonnegativeRationals_le_r.
apply plusNonnegativeRationals_le_l.
× intros xy.
apply (isirrefl_StrongOrder ltNonnegativeRationals (pr1 qx + pr1 qy + c)).
pattern c at 2; rewrite (NQhalf_double c).
pattern (pr1 qx + pr1 qy + c) at 1 ; rewrite (pr1 (pr2 xy)).
rewrite <- isassoc_plusNonnegativeRationals.
rewrite (isassoc_plusNonnegativeRationals (pr1 qx) (pr1 qy) (c / 2)%NRat).
rewrite (iscomm_plusNonnegativeRationals (pr1 qy)).
rewrite <- isassoc_plusNonnegativeRationals.
rewrite (isassoc_plusNonnegativeRationals (pr1 qx + (c/2)%NRat)).
apply plusNonnegativeRationals_ltcompat.
apply notge_ltNonnegativeRationals ; intro H.
apply (pr2 (pr2 qx)) ; apply X_bot with (1 := pr1 (pr2 (pr2 xy))) ; exact H.
apply notge_ltNonnegativeRationals ; intro H.
apply (pr2 (pr2 qy)) ; apply Y_bot with (1 := pr2 (pr2 (pr2 xy))) ; exact H.
Qed.
End Dcuts_plus.
Definition Dcuts_plus (X Y : Dcuts) : Dcuts :=
mk_Dcuts (Dcuts_plus_val (pr1 X) (pr1 Y))
(Dcuts_plus_bot (pr1 X) (is_Dcuts_bot X)
(pr1 Y) (is_Dcuts_bot Y))
(Dcuts_plus_open (pr1 X) (is_Dcuts_open X)
(pr1 Y) (is_Dcuts_open Y))
(Dcuts_plus_corr (pr1 X) (is_Dcuts_bot X) (is_Dcuts_corr X)
(pr1 Y) (is_Dcuts_bot Y) (is_Dcuts_corr Y)).
Section Dcuts_NQmult.
Context (x : NonnegativeRationals).
Context (Hx : (0 < x)%NRat).
Context (Y : hsubtype NonnegativeRationals).
Context (Y_bot : Dcuts_def_bot Y).
Context (Y_open : Dcuts_def_open Y).
Context (Y_finite : Dcuts_def_finite Y).
Context (Y_corr : Dcuts_def_corr Y).
Definition Dcuts_NQmult_val : hsubtype NonnegativeRationals :=
λ r, ∃ ry : NonnegativeRationals, r = x × ry × Y ry.
Lemma Dcuts_NQmult_bot : Dcuts_def_bot Dcuts_NQmult_val.
Proof.
intros r Hr n Hn.
revert Hr ; apply hinhfun ;
intros ry.
generalize (isdeceq_NonnegativeRationals r 0%NRat) ;
apply sumofmaps ; intros Hr0.
- rewrite Hr0 in Hn.
apply NonnegativeRationals_eq0_le0 in Hn.
∃ 0%NRat.
rewrite Hn ; simpl.
split.
+ now rewrite israbsorb_zero_multNonnegativeRationals.
+ apply Y_bot with (1 := pr2 (pr2 ry)).
apply isnonnegative_NonnegativeRationals.
- set (ny := pr1 ry × (n / r)%NRat).
∃ ny.
split.
+ unfold ny ; simpl.
rewrite <- isassoc_multNonnegativeRationals, <- (pr1 (pr2 ry)).
rewrite multdivNonnegativeRationals.
reflexivity.
now apply NonnegativeRationals_neq0_gt0.
+ apply Y_bot with (1 := pr2 (pr2 ry)).
apply multNonnegativeRationals_le1_r.
now apply divNonnegativeRationals_le1.
Qed.
Lemma Dcuts_NQmult_open : Dcuts_def_open Dcuts_NQmult_val.
Proof.
intros r.
apply hinhuniv ; intros ry.
generalize (Y_open _ (pr2 (pr2 ry))).
apply hinhfun.
intros ny.
∃ (x × pr1 ny).
split.
- apply hinhpr ; ∃ (pr1 ny).
split.
+ reflexivity.
+ exact (pr1 (pr2 ny)).
- pattern r at 1 ; rewrite (pr1 (pr2 ry)).
apply multNonnegativeRationals_ltcompat_l.
exact Hx.
exact (pr2 (pr2 ny)).
Qed.
Lemma Dcuts_NQmult_finite : Dcuts_def_finite Dcuts_NQmult_val.
Proof.
revert Y_finite.
apply hinhfun.
intros y.
∃ (x × pr1 y).
unfold neg ; apply (hinhuniv (P := hProppair _ isapropempty)) ;
intros ry.
generalize (pr1 (pr2 ry)).
apply gtNonnegativeRationals_noteq.
apply (pr2 (lt_gtNonnegativeRationals _ _)).
apply (multNonnegativeRationals_ltcompat_l x (pr1 ry) (pr1 y) Hx).
apply notge_ltNonnegativeRationals.
intro Hy' ; apply (pr2 y).
apply Y_bot with (pr1 ry).
exact (pr2 (pr2 ry)).
exact Hy'.
Qed.
Lemma Dcuts_NQmult_corr : Dcuts_def_corr Dcuts_NQmult_val.
Proof.
intros c Hc.
assert (Hcx : (0 < c / x)%NRat) by (now apply ispositive_divNonnegativeRationals).
generalize (Y_corr _ Hcx).
apply hinhfun ; apply sumofmaps ; intros Hy.
- left.
unfold neg ; apply (hinhuniv (P := hProppair _ isapropempty)) ;
intros ry.
generalize (pr1 (pr2 ry)).
apply gtNonnegativeRationals_noteq.
pattern c at 1 ;
rewrite <- (multdivNonnegativeRationals c x).
apply (pr2 (lt_gtNonnegativeRationals _ _)).
apply (multNonnegativeRationals_ltcompat_l x (pr1 ry) (c / x)%NRat Hx).
apply notge_ltNonnegativeRationals.
intro Hy' ; apply Hy.
apply Y_bot with (pr1 ry).
exact (pr2 (pr2 ry)).
exact Hy'.
exact Hx.
- right.
rename Hy into q.
∃ (x × pr1 q).
split.
+ apply hinhpr.
∃ (pr1 q).
split.
reflexivity.
exact (pr1 (pr2 q)).
+ unfold neg ; apply (hinhuniv (P := hProppair _ isapropempty)) ;
intros ry.
generalize (pr1 (pr2 ry)).
apply gtNonnegativeRationals_noteq.
pattern c at 1;
rewrite <- (multdivNonnegativeRationals c x), <-isldistr_mult_plusNonnegativeRationals.
apply (pr2 ( lt_gtNonnegativeRationals _ _)).
apply (multNonnegativeRationals_ltcompat_l x (pr1 ry) (pr1 q + c / x)%NRat Hx).
apply notge_ltNonnegativeRationals.
intro Hy' ; apply (pr2 (pr2 q)).
apply Y_bot with (pr1 ry).
exact (pr2 (pr2 ry)).
exact Hy'.
exact Hx.
Qed.
End Dcuts_NQmult.
Definition Dcuts_NQmult x (Y : Dcuts) Hx : Dcuts :=
mk_Dcuts (Dcuts_NQmult_val x (pr1 Y))
(Dcuts_NQmult_bot x (pr1 Y) (is_Dcuts_bot Y))
(Dcuts_NQmult_open x Hx (pr1 Y) (is_Dcuts_open Y))
(Dcuts_NQmult_corr x Hx (pr1 Y) (is_Dcuts_bot Y) (is_Dcuts_corr Y)).
Section Dcuts_mult.
Context (X : hsubtype NonnegativeRationals).
Context (X_bot : Dcuts_def_bot X).
Context (X_open : Dcuts_def_open X).
Context (X_finite : Dcuts_def_finite X).
Context (X_corr : Dcuts_def_corr X).
Context (Y : hsubtype NonnegativeRationals).
Context (Y_bot : Dcuts_def_bot Y).
Context (Y_open : Dcuts_def_open Y).
Context (Y_finite : Dcuts_def_finite Y).
Context (Y_corr : Dcuts_def_corr Y).
Definition Dcuts_mult_val : hsubtype NonnegativeRationals :=
λ r, ∃ xy : NonnegativeRationals × NonnegativeRationals,
r = (pr1 xy × pr2 xy)%NRat × X (pr1 xy) × Y (pr2 xy).
Lemma Dcuts_mult_bot : Dcuts_def_bot Dcuts_mult_val.
Proof.
intros r Hr n Hn.
revert Hr ; apply hinhfun ;
intros xy.
generalize (isdeceq_NonnegativeRationals r 0%NRat) ;
apply sumofmaps ; intros Hr0.
- rewrite Hr0 in Hn.
apply NonnegativeRationals_eq0_le0 in Hn.
∃ (0%NRat,,0%NRat).
rewrite Hn ; simpl.
repeat split.
+ now rewrite israbsorb_zero_multNonnegativeRationals.
+ apply X_bot with (1 := pr1 (pr2 (pr2 xy))).
apply isnonnegative_NonnegativeRationals.
+ apply Y_bot with (1 := pr2 (pr2 (pr2 xy))).
apply isnonnegative_NonnegativeRationals.
- set (nx := pr1 (pr1 xy)).
set (ny := (pr2 (pr1 xy) × (n / r))%NRat).
∃ (nx,,ny).
repeat split.
+ unfold nx,ny ; simpl.
rewrite <- isassoc_multNonnegativeRationals, <- (pr1 (pr2 xy)).
rewrite multdivNonnegativeRationals.
reflexivity.
now apply NonnegativeRationals_neq0_gt0.
+ exact (pr1 (pr2 (pr2 xy))).
+ apply Y_bot with (1 := pr2 (pr2 (pr2 xy))).
apply multNonnegativeRationals_le1_r.
now apply divNonnegativeRationals_le1.
Qed.
Lemma Dcuts_mult_open : Dcuts_def_open Dcuts_mult_val.
Proof.
intros r.
apply hinhuniv ; intros xy.
generalize (X_open _ (pr1 (pr2 (pr2 xy)))) (Y_open _ (pr2 (pr2 (pr2 xy)))).
apply hinhfun2.
intros nx ny.
∃ (pr1 nx × pr1 ny).
split.
- apply hinhpr ; ∃ (pr1 nx ,, pr1 ny).
repeat split.
+ exact (pr1 (pr2 nx)).
+ exact (pr1 (pr2 ny)).
- pattern r at 1 ; rewrite (pr1 (pr2 xy)).
apply multNonnegativeRationals_ltcompat.
exact (pr2 (pr2 nx)).
exact (pr2 (pr2 ny)).
Qed.
Lemma Dcuts_mult_finite : Dcuts_def_finite Dcuts_mult_val.
Proof.
revert X_finite Y_finite.
apply hinhfun2.
intros x y.
∃ (pr1 x × pr1 y).
unfold neg ; apply (hinhuniv (P := hProppair _ isapropempty)) ;
intros xy.
generalize (isdecrel_ltNonnegativeRationals (pr1 (pr1 xy)) (pr1 x)) ; apply sumofmaps ; intros Hx'.
generalize (isdecrel_ltNonnegativeRationals (pr2 (pr1 xy)) (pr1 y)) ; apply sumofmaps ; intros Hy'.
- apply (isirrefl_StrongOrder ltNonnegativeRationals (pr1 x × pr1 y)).
pattern (pr1 x × pr1 y) at 1 ; rewrite (pr1 (pr2 xy)).
now apply multNonnegativeRationals_ltcompat.
- apply (pr2 y).
apply Y_bot with (1 := pr2 (pr2 (pr2 xy))).
now apply notlt_geNonnegativeRationals ; apply Hy'.
- apply (pr2 x).
apply X_bot with (1 := pr1 (pr2 (pr2 xy))).
now apply notlt_geNonnegativeRationals ; apply Hx'.
Qed.
Context (Hx1 : ¬ X 1%NRat).
Lemma Dcuts_mult_corr_aux : Dcuts_def_corr Dcuts_mult_val.
Proof.
intros c Hc0.
apply ispositive_NQhalf in Hc0.
generalize (Y_corr _ Hc0).
apply hinhuniv ; apply sumofmaps ; intros Hy.
- apply hinhpr ; left.
unfold neg ; apply (hinhuniv (P := hProppair _ isapropempty)) ;
intros xy.
generalize (pr1 (pr2 xy)).
apply gtNonnegativeRationals_noteq.
pattern c at 1 ;
rewrite <- (islunit_oneNonnegativeRationals c).
apply multNonnegativeRationals_ltcompat.
apply notge_ltNonnegativeRationals ; intro H.
apply Hx1, X_bot with (1 := pr1 (pr2 (pr2 xy))).
exact H.
apply notge_ltNonnegativeRationals ; intro H.
apply Hy, Y_bot with (1 := pr2 (pr2 (pr2 xy))).
apply istrans_leNonnegativeRationals with (2 := H).
pattern c at 2 ; rewrite (NQhalf_double c).
now apply plusNonnegativeRationals_le_r.
- rename Hy into y.
assert (Hq1 : (0 < pr1 y + c / 2)%NRat).
{ apply istrans_lt_le_ltNonnegativeRationals with (c / 2)%NRat.
exact Hc0.
now apply plusNonnegativeRationals_le_l. }
set (cx := ((c / 2) / (pr1 y + (c / 2)))%NRat).
assert (Hcx0 : (0 < cx)%NRat)
by (now apply ispositive_divNonnegativeRationals).
generalize (X_corr _ Hcx0) ; apply hinhfun ; apply sumofmaps ; intros H.
+ left.
unfold neg ; apply (hinhuniv (P := hProppair _ isapropempty)) ;
intros xy.
generalize (pr1 (pr2 xy)).
apply gtNonnegativeRationals_noteq.
apply istrans_ltNonnegativeRationals with (c / 2)%NRat.
rewrite <- (multdivNonnegativeRationals (c / 2)%NRat (pr1 y + (c / 2)%NRat)).
rewrite iscomm_multNonnegativeRationals.
apply multNonnegativeRationals_ltcompat.
apply notge_ltNonnegativeRationals ; intro H0.
apply (pr2 (pr2 y)), Y_bot with (1 := pr2 (pr2 (pr2 xy))).
exact H0.
apply notge_ltNonnegativeRationals ; intro H0.
apply H, X_bot with (1 := pr1 (pr2 (pr2 xy))).
exact H0.
exact Hq1.
rewrite <- (islunit_zeroNonnegativeRationals (c / 2)%NRat).
pattern c at 2 ; rewrite (NQhalf_double c).
now apply plusNonnegativeRationals_ltcompat_r.
+ right.
rename H into x.
∃ (pr1 x × pr1 y) ; repeat split.
× apply hinhpr.
∃ (pr1 x,, pr1 y) ; simpl ; repeat split.
exact (pr1 (pr2 x)).
exact (pr1 (pr2 y)).
× unfold neg ; apply (hinhuniv (P := hProppair _ isapropempty)) ;
intros xy.
generalize (pr1 (pr2 xy)).
apply gtNonnegativeRationals_noteq.
apply istrans_lt_le_ltNonnegativeRationals with ((pr1 x + cx)* (pr1 y + (c / 2)%NRat)).
apply multNonnegativeRationals_ltcompat.
apply notge_ltNonnegativeRationals.
intros H ; apply (pr2 (pr2 x)), X_bot with (1 := pr1 (pr2 (pr2 xy))).
exact H.
apply notge_ltNonnegativeRationals.
intros H ; apply (pr2 (pr2 y)), Y_bot with (1 := pr2 (pr2 (pr2 xy))).
exact H.
rewrite isrdistr_mult_plusNonnegativeRationals, (iscomm_multNonnegativeRationals cx).
unfold cx ; rewrite multdivNonnegativeRationals.
pattern c at 3;
rewrite (NQhalf_double c), <- isassoc_plusNonnegativeRationals.
apply plusNonnegativeRationals_lecompat_r.
rewrite isldistr_mult_plusNonnegativeRationals.
apply plusNonnegativeRationals_lecompat_l.
rewrite iscomm_multNonnegativeRationals.
apply multNonnegativeRationals_le1_r.
apply lt_leNonnegativeRationals, notge_ltNonnegativeRationals.
intro H ; apply Hx1.
now apply X_bot with (1 := pr1 (pr2 x)).
exact Hq1.
Qed.
End Dcuts_mult.
Section Dcuts_mult'.
Context (X : hsubtype NonnegativeRationals).
Context (X_bot : Dcuts_def_bot X).
Context (X_open : Dcuts_def_open X).
Context (X_finite : Dcuts_def_finite X).
Context (X_corr : Dcuts_def_corr X).
Context (Y : hsubtype NonnegativeRationals).
Context (Y_bot : Dcuts_def_bot Y).
Context (Y_open : Dcuts_def_open Y).
Context (Y_finite : Dcuts_def_finite Y).
Context (Y_corr : Dcuts_def_corr Y).
Lemma Dcuts_mult_corr : Dcuts_def_corr (Dcuts_mult_val X Y).
Proof.
intros c Hc.
generalize (X_corr 1%NRat ispositive_oneNonnegativeRationals).
apply hinhuniv ; apply sumofmaps ; [ intros Hx1 | intros x].
- now apply Dcuts_mult_corr_aux.
- assert (Hx1 : (0 < pr1 x + 1)%NRat).
{ apply istrans_lt_le_ltNonnegativeRationals with (1 := ispositive_oneNonnegativeRationals).
apply plusNonnegativeRationals_le_l. }
assert (Heq : Dcuts_mult_val X Y = (Dcuts_NQmult_val (pr1 x + 1%NRat) (Dcuts_mult_val (Dcuts_NQmult_val (/ (pr1 x + 1))%NRat X) Y))).
{ apply funextfun ; intro r.
apply hPropUnivalence.
- apply hinhfun.
intros xy.
∃ (r / (pr1 x + 1))%NRat ; split.
+ now rewrite multdivNonnegativeRationals.
+ apply hinhpr.
∃ (pr1 (pr1 xy) / (pr1 x + 1%NRat),,pr2 (pr1 xy))%NRat ; simpl ; repeat split.
× unfold divNonnegativeRationals.
rewrite isassoc_multNonnegativeRationals, (iscomm_multNonnegativeRationals (/ (pr1 x + 1))%NRat).
rewrite <- isassoc_multNonnegativeRationals.
now pattern r at 1 ; rewrite (pr1 (pr2 xy)).
× apply hinhpr.
∃ (pr1 (pr1 xy)) ; split.
now apply iscomm_multNonnegativeRationals.
exact (pr1 (pr2 (pr2 xy))).
× exact (pr2 (pr2 (pr2 xy))).
- apply hinhuniv.
intros rx.
generalize (pr2 (pr2 rx)) ; apply hinhuniv.
intros xy.
generalize (pr1 (pr2 (pr2 xy))) ; apply hinhfun ; intros rx'.
rewrite (pr1 (pr2 rx)), (pr1 (pr2 xy)), (pr1 (pr2 rx')).
∃ (pr1 rx',,pr2 (pr1 xy)) ; repeat split.
now rewrite <- !isassoc_multNonnegativeRationals, isrinv_NonnegativeRationals, islunit_oneNonnegativeRationals.
exact (pr2 (pr2 rx')).
exact (pr2 (pr2 (pr2 xy))). }
rewrite Heq.
revert c Hc.
apply Dcuts_NQmult_corr.
+ exact Hx1.
+ apply Dcuts_mult_bot, Y_bot.
now apply Dcuts_NQmult_bot.
+ apply Dcuts_mult_corr_aux.
now apply Dcuts_NQmult_bot.
apply Dcuts_NQmult_corr.
now apply ispositive_invNonnegativeRationals.
exact X_bot.
exact X_corr.
exact Y_bot.
exact Y_corr.
unfold neg ; apply (hinhuniv (P := hProppair _ isapropempty)) ;
intros rx.
apply (pr2 (pr2 x)), X_bot with (1 := pr2 (pr2 rx)).
rewrite <- (isrunit_oneNonnegativeRationals (pr1 x + 1%NRat)).
pattern 1%NRat at 2; rewrite (pr1 (pr2 rx)), <- isassoc_multNonnegativeRationals.
rewrite isrinv_NonnegativeRationals, islunit_oneNonnegativeRationals.
now apply isrefl_leNonnegativeRationals.
exact Hx1.
Qed.
End Dcuts_mult'.
Definition Dcuts_mult (X Y : Dcuts) : Dcuts :=
mk_Dcuts (Dcuts_mult_val (pr1 X) (pr1 Y))
(Dcuts_mult_bot (pr1 X) (is_Dcuts_bot X)
(pr1 Y) (is_Dcuts_bot Y))
(Dcuts_mult_open (pr1 X) (is_Dcuts_open X)
(pr1 Y) (is_Dcuts_open Y))
(Dcuts_mult_corr (pr1 X) (is_Dcuts_bot X) (is_Dcuts_corr X)
(pr1 Y) (is_Dcuts_bot Y) (is_Dcuts_corr Y)).
Section Dcuts_inv.
Context (X : hsubtype NonnegativeRationals).
Context (X_bot : Dcuts_def_bot X).
Context (X_open : Dcuts_def_open X).
Context (X_finite : Dcuts_def_finite X).
Context (X_corr : Dcuts_def_corr X).
Context (X_0 : X 0%NRat).
Definition Dcuts_inv_val : hsubtype NonnegativeRationals :=
λ r : NonnegativeRationals,
hexists (λ l : NonnegativeRationals, (∏ rx : NonnegativeRationals, X rx → (r × rx ≤ l)%NRat)
× (0 < l)%NRat × (l < 1)%NRat).
Lemma Dcuts_inv_in :
∏ x, (0 < x)%NRat → X x → (Dcuts_inv_val (/ x)%NRat) → empty.
Proof.
intros x Hx0 Xx.
unfold neg ; apply (hinhuniv (P := hProppair _ isapropempty)) ; intros l.
set (H := pr1 (pr2 l) _ Xx).
rewrite islinv_NonnegativeRationals in H.
apply (pr2 (notlt_geNonnegativeRationals _ _)) in H.
now apply H, (pr2 (pr2 (pr2 l))).
exact Hx0.
Qed.
Lemma Dcuts_inv_out :
∏ x, ¬ (X x) → ∏ y, (x < y)%NRat → Dcuts_inv_val (/ y)%NRat.
Proof.
intros x nXx y Hy.
apply hinhpr.
∃ (x / y)%NRat ; repeat split.
- intros rx Hrx.
unfold divNonnegativeRationals.
rewrite iscomm_multNonnegativeRationals.
apply multNonnegativeRationals_lecompat_r.
apply lt_leNonnegativeRationals, notge_ltNonnegativeRationals.
intros H ; apply nXx.
now apply X_bot with (1 := Hrx).
- apply ispositive_divNonnegativeRationals.
apply notge_ltNonnegativeRationals.
intros H ; apply nXx.
now apply X_bot with (1 := X_0).
apply istrans_le_lt_ltNonnegativeRationals with (2 := Hy).
now apply isnonnegative_NonnegativeRationals.
- apply_pr2 (multNonnegativeRationals_ltcompat_r y).
apply istrans_le_lt_ltNonnegativeRationals with (2 := Hy).
now apply isnonnegative_NonnegativeRationals.
unfold divNonnegativeRationals.
rewrite isassoc_multNonnegativeRationals, islinv_NonnegativeRationals, islunit_oneNonnegativeRationals, isrunit_oneNonnegativeRationals.
exact Hy.
apply istrans_le_lt_ltNonnegativeRationals with (2 := Hy).
now apply isnonnegative_NonnegativeRationals.
Qed.
Lemma Dcuts_inv_bot : Dcuts_def_bot Dcuts_inv_val.
Proof.
intros r Hr q Hq.
revert Hr.
apply hinhfun ; intros l.
∃ (pr1 l) ; repeat split.
- intros rx Xrx.
apply istrans_leNonnegativeRationals with (2 := pr1 (pr2 l) _ Xrx).
now apply multNonnegativeRationals_lecompat_r.
- exact (pr1 (pr2 (pr2 l))).
- exact (pr2 (pr2 (pr2 l))).
Qed.
Lemma Dcuts_inv_open : Dcuts_def_open Dcuts_inv_val.
Proof.
intros r.
apply hinhuniv.
intros l.
generalize (eq0orgt0NonnegativeRationals r) ; apply sumofmaps ; intros Hr0.
- rewrite Hr0 in l |- × ; clear r Hr0.
revert X_finite.
apply hinhfun.
intros r'.
set (r := NQmax 2%NRat (pr1 r')).
assert (Hr1 : (1 < r)%NRat).
{ apply istrans_lt_le_ltNonnegativeRationals with (2 := NQmax_le_l _ _).
exact one_lt_twoNonnegativeRationals. }
assert (Hr0 : (0 < r)%NRat).
{ simple refine (istrans_le_lt_ltNonnegativeRationals _ _ _ _ Hr1).
now apply isnonnegative_NonnegativeRationals. }
∃ (/ (r × r))%NRat ; split.
+ apply hinhpr.
∃ (/ r)%NRat ; repeat split.
× intros rx Xrx.
apply (multNonnegativeRationals_lecompat_l' (r × r)).
now apply ispositive_multNonnegativeRationals.
rewrite <- isassoc_multNonnegativeRationals, isrinv_NonnegativeRationals, islunit_oneNonnegativeRationals.
rewrite isassoc_multNonnegativeRationals, isrinv_NonnegativeRationals, isrunit_oneNonnegativeRationals.
apply istrans_leNonnegativeRationals with (2 := NQmax_le_r _ _).
apply lt_leNonnegativeRationals, notge_ltNonnegativeRationals ; intro H ; apply (pr2 r').
now apply X_bot with (1 := Xrx).
exact Hr0.
now apply ispositive_multNonnegativeRationals.
× now apply ispositive_invNonnegativeRationals.
× apply_pr2 (multNonnegativeRationals_ltcompat_l r).
assumption.
now rewrite isrinv_NonnegativeRationals, isrunit_oneNonnegativeRationals.
+ apply ispositive_invNonnegativeRationals.
now apply ispositive_multNonnegativeRationals.
- set (l' := between_ltNonnegativeRationals _ _ (pr2 (pr2 (pr2 l)))).
apply hinhpr.
∃ ((pr1 l'/pr1 l) × r)%NRat ; split.
+ apply hinhpr.
∃ (pr1 l') ; repeat split.
× intros rx Xrx.
rewrite isassoc_multNonnegativeRationals.
pattern l' at 1 ;
rewrite <- (multdivNonnegativeRationals (pr1 l') (pr1 l)), iscomm_multNonnegativeRationals.
apply multNonnegativeRationals_lecompat_r.
now apply (pr1 (pr2 l)).
exact (pr1 (pr2 (pr2 l))).
× apply istrans_le_lt_ltNonnegativeRationals with (2 := pr1 (pr2 l')).
now apply isnonnegative_NonnegativeRationals.
× exact (pr2 (pr2 l')).
+ pattern r at 1 ; rewrite <- (islunit_oneNonnegativeRationals r).
apply multNonnegativeRationals_ltcompat_r.
exact Hr0.
apply_pr2 (multNonnegativeRationals_ltcompat_r (pr1 l)).
exact (pr1 (pr2 (pr2 l))).
rewrite islunit_oneNonnegativeRationals.
rewrite iscomm_multNonnegativeRationals, multdivNonnegativeRationals.
exact (pr1 (pr2 l')).
exact (pr1 (pr2 (pr2 l))).
Qed.
Context (X_1 : X 1%NRat).
Lemma Dcuts_inv_corr_aux : Dcuts_def_corr Dcuts_inv_val.
Proof.
assert (∏ c, (0 < c)%NRat → hexists (λ q : NonnegativeRationals, X q × ¬ X (q + c))).
{ intros c Hc0.
generalize (X_corr c Hc0) ; apply hinhuniv ; apply sumofmaps ; [ intros nXc | intros H].
- apply hinhpr.
∃ 0%NRat ; split.
+ exact X_0.
+ now rewrite islunit_zeroNonnegativeRationals.
- apply hinhpr ; exact H. }
clear X_corr ; rename X0 into X_corr.
intros c Hc0.
apply ispositive_NQhalf in Hc0.
specialize (X_corr _ Hc0) ; revert X_corr.
apply hinhfun ; intros r.
right.
∃ (/ (NQmax 1%NRat (pr1 r) + c))%NRat ; split.
- apply Dcuts_inv_out with (1 := pr2 (pr2 r)).
pattern c at 2; rewrite (NQhalf_double c), <- isassoc_plusNonnegativeRationals.
eapply istrans_le_lt_ltNonnegativeRationals, plusNonnegativeRationals_lt_r.
apply plusNonnegativeRationals_lecompat_r ; apply NQmax_le_r.
exact Hc0.
- assert (Xmax : X (NQmax 1%NRat (pr1 r))).
{ apply NQmax_case.
exact X_1.
exact (pr1 (pr2 r)). }
assert (Hmax : (0 < NQmax 1 (pr1 r))%NRat).
{ eapply istrans_lt_le_ltNonnegativeRationals, NQmax_le_l.
now eapply ispositive_oneNonnegativeRationals. }
intro Hinv ; apply (Dcuts_inv_in _ Hmax Xmax), Dcuts_inv_bot with (1 := Hinv).
apply lt_leNonnegativeRationals, minusNonnegativeRationals_ltcompat_l' with (/ (NQmax 1 (pr1 r) + c))%NRat.
rewrite plusNonnegativeRationals_minus_l.
rewrite minus_divNonnegativeRationals, plusNonnegativeRationals_minus_l.
unfold divNonnegativeRationals ;
apply_pr2 (multNonnegativeRationals_ltcompat_r (NQmax 1 (pr1 r) × (NQmax 1 (pr1 r) + c))%NRat).
apply ispositive_multNonnegativeRationals.
exact Hmax.
now apply ispositive_plusNonnegativeRationals_l.
rewrite isassoc_multNonnegativeRationals, islinv_NonnegativeRationals.
apply multNonnegativeRationals_ltcompat_l.
now apply_pr2 ispositive_NQhalf.
pattern 1%NRat at 1 ;
rewrite <- (islunit_oneNonnegativeRationals 1%NRat).
apply istrans_le_lt_ltNonnegativeRationals with (NQmax 1 (pr1 r) × 1)%NRat.
now apply multNonnegativeRationals_lecompat_r, NQmax_le_l.
apply multNonnegativeRationals_ltcompat_l.
exact Hmax.
apply istrans_le_lt_ltNonnegativeRationals with (1 := NQmax_le_l _ (pr1 r)).
apply plusNonnegativeRationals_lt_r.
now apply_pr2 ispositive_NQhalf.
apply ispositive_multNonnegativeRationals.
exact Hmax.
now apply ispositive_plusNonnegativeRationals_l.
now apply ispositive_plusNonnegativeRationals_l.
Qed.
End Dcuts_inv.
Section Dcuts_inv'.
Context (X : hsubtype NonnegativeRationals).
Context (X_bot : Dcuts_def_bot X).
Context (X_open : Dcuts_def_open X).
Context (X_finite : Dcuts_def_finite X).
Context (X_corr : Dcuts_def_corr X).
Context (X_0 : X 0%NRat).
Lemma Dcuts_inv_corr : Dcuts_def_corr (Dcuts_inv_val X).
Proof.
generalize (X_open _ X_0) ; apply (hinhuniv (P := hProppair _ (isaprop_Dcuts_def_corr _))) ; intros x.
set (Y := Dcuts_NQmult_val (/ (pr1 x))%NRat X).
assert (Y_1 : Y 1%NRat).
{ unfold Y ; apply hinhpr ; ∃ (pr1 x) ; split.
apply pathsinv0, islinv_NonnegativeRationals.
exact (pr2 (pr2 x)).
exact (pr1 (pr2 x)). }
assert (Heq : Dcuts_inv_val X = Dcuts_NQmult_val (/(pr1 x))%NRat (Dcuts_inv_val Y)).
{ apply funextfun ; intro r.
apply hPropUnivalence.
- apply hinhfun ; intros l.
∃ (pr1 x × r) ; split.
rewrite <- isassoc_multNonnegativeRationals, islinv_NonnegativeRationals, islunit_oneNonnegativeRationals.
reflexivity.
exact (pr2 (pr2 x)).
apply hinhpr.
∃ (pr1 l) ; repeat split.
intros q ; unfold Y.
apply hinhuniv ; intros s.
rewrite (pr1 (pr2 s)).
rewrite (iscomm_multNonnegativeRationals (pr1 x)), <- isassoc_multNonnegativeRationals.
rewrite iscomm_multNonnegativeRationals, !isassoc_multNonnegativeRationals,
isrinv_NonnegativeRationals, isrunit_oneNonnegativeRationals, iscomm_multNonnegativeRationals.
apply (pr1 (pr2 l)).
exact (pr2 (pr2 s)).
exact (pr2 (pr2 x)).
exact (pr1 (pr2 (pr2 l))).
exact (pr2 (pr2 (pr2 l))).
- apply hinhuniv. intros q.
rewrite (pr1 (pr2 q)).
generalize (pr2 (pr2 q)).
apply hinhfun ; intros l.
∃ (pr1 l) ; repeat split.
intros s Xs.
rewrite (iscomm_multNonnegativeRationals (/ pr1 x)%NRat), isassoc_multNonnegativeRationals.
apply (pr1 (pr2 l)).
unfold Y ; apply hinhpr.
now ∃ s.
exact (pr1 (pr2 (pr2 l))).
exact (pr2 (pr2 (pr2 l))). }
rewrite Heq.
apply Dcuts_NQmult_corr.
apply ispositive_invNonnegativeRationals.
exact (pr2 (pr2 x)).
now apply Dcuts_inv_bot.
apply Dcuts_inv_corr_aux.
now unfold Y ; apply Dcuts_NQmult_bot.
unfold Y ; apply Dcuts_NQmult_corr.
apply ispositive_invNonnegativeRationals.
exact (pr2 (pr2 x)).
exact X_bot.
exact X_corr.
apply hinhpr ; ∃ 0%NRat ; split.
now rewrite israbsorb_zero_multNonnegativeRationals.
exact X_0.
exact Y_1.
Qed.
End Dcuts_inv'.
Definition Dcuts_inv (X : Dcuts) (X_0 : X ≠ 0) : Dcuts.
Proof.
intros.
apply (mk_Dcuts (Dcuts_inv_val (pr1 X))).
- now apply Dcuts_inv_bot.
- apply Dcuts_inv_open.
now apply is_Dcuts_bot.
now apply Dcuts_def_corr_finite, is_Dcuts_corr.
- apply Dcuts_inv_corr.
now apply is_Dcuts_bot.
now apply is_Dcuts_open.
now apply is_Dcuts_corr.
now apply_pr2 Dcuts_apzero_notempty.
Defined.
Lemma Dcuts_NQmult_mult :
∏ (x : NonnegativeRationals) (y : Dcuts) (Hx0 : (0 < x)%NRat), Dcuts_NQmult x y Hx0 = Dcuts_mult (NonnegativeRationals_to_Dcuts x) y.
Proof.
intros x y Hx0.
apply Dcuts_eq_is_eq.
intros r ; split.
- apply hinhuniv.
intros ry.
generalize (is_Dcuts_open _ _ (pr2 (pr2 ry))).
apply hinhfun ; intros ry'.
∃ (((x × (pr1 ry)) / (pr1 ry'))%NRat,, (pr1 ry')).
simpl.
assert (Hry' : (0 < pr1 ry')%NRat).
{ eapply istrans_le_lt_ltNonnegativeRationals, (pr2 (pr2 ry')).
apply isnonnegative_NonnegativeRationals. }
split ; [ | split].
+ unfold divNonnegativeRationals.
rewrite isassoc_multNonnegativeRationals, islinv_NonnegativeRationals, isrunit_oneNonnegativeRationals.
exact (pr1 (pr2 ry)).
exact Hry'.
+ pattern x at 2.
rewrite <- (isrunit_oneNonnegativeRationals x).
unfold divNonnegativeRationals.
rewrite isassoc_multNonnegativeRationals.
apply multNonnegativeRationals_ltcompat_l.
exact Hx0.
rewrite <- (isrinv_NonnegativeRationals (pr1 ry')).
apply multNonnegativeRationals_ltcompat_r.
apply ispositive_invNonnegativeRationals.
exact Hry'.
exact (pr2 (pr2 ry')).
exact Hry'.
+ exact (pr1 (pr2 ry')).
- apply hinhfun ; simpl.
intros xy.
∃ (pr1 (pr1 xy) × pr2 (pr1 xy) / x).
split.
+ rewrite iscomm_multNonnegativeRationals.
unfold divNonnegativeRationals.
rewrite isassoc_multNonnegativeRationals, islinv_NonnegativeRationals, isrunit_oneNonnegativeRationals.
exact (pr1 (pr2 xy)).
exact Hx0.
+ apply is_Dcuts_bot with (1 := pr2 (pr2 (pr2 xy))).
pattern (pr2 (pr1 xy)) at 2.
rewrite <- (isrunit_oneNonnegativeRationals (pr2 (pr1 xy))), <- (isrinv_NonnegativeRationals x), <- isassoc_multNonnegativeRationals.
apply multNonnegativeRationals_lecompat_r.
rewrite iscomm_multNonnegativeRationals.
apply multNonnegativeRationals_lecompat_l.
apply lt_leNonnegativeRationals.
exact (pr1 (pr2 (pr2 xy))).
exact Hx0.
Qed.
Lemma iscomm_Dcuts_plus : iscomm Dcuts_plus.
Proof.
assert (H : ∏ x y, ∏ x0 : NonnegativeRationals, x0 ∈ Dcuts_plus x y → x0 ∈ Dcuts_plus y x).
{ intros x y r.
apply hinhuniv, sumofmaps ; simpl pr1.
- apply sumofmaps ; intros Hr.
+ now apply hinhpr ; left ; right.
+ now apply hinhpr ; left ; left.
- intros xy.
apply hinhpr ; right ; ∃ (pr2 (pr1 xy),, pr1 (pr1 xy)).
repeat split.
+ pattern r at 1 ; rewrite (pr1 (pr2 xy)).
apply iscomm_plusNonnegativeRationals.
+ exact (pr2 (pr2 (pr2 xy))).
+ exact (pr1 (pr2 (pr2 xy))).
}
intros x y.
apply Dcuts_eq_is_eq ; intro r ; split.
- now apply H.
- now apply H.
Qed.
Lemma Dcuts_plus_lt_l :
∏ x x' y : Dcuts, Dcuts_plus x y < Dcuts_plus x' y → x < x'.
Proof.
intros x x' y.
apply hinhuniv ; intros r.
generalize (pr2 (pr2 r)) ; apply hinhfun ; apply sumofmaps ;
[ apply sumofmaps ; [ intros Xr | intros Yr] | intros xy ].
- ∃ (pr1 r) ; split.
intro H ; apply (pr1 (pr2 r)).
now apply hinhpr ; left ; left.
exact Xr.
- apply fromempty, (pr1 (pr2 r)).
now apply hinhpr ; left ; right.
- ∃ (pr1 (pr1 xy)) ; split.
intro H ; apply (pr1 (pr2 r)).
apply hinhpr ; right ; ∃ (pr1 xy).
repeat split.
exact (pr1 (pr2 xy)).
exact H.
exact (pr2 (pr2 (pr2 xy))).
exact (pr1 (pr2 (pr2 xy))).
Qed.
Lemma islapbinop_Dcuts_plus : islapbinop Dcuts_plus.
Proof.
intros y x x'.
apply sumofmaps ; intros Hlt.
- left.
now apply Dcuts_plus_lt_l with y.
- right.
now apply Dcuts_plus_lt_l with y.
Qed.
Lemma israpbinop_Dcuts_plus : israpbinop Dcuts_plus.
Proof.
intros x y y'.
rewrite !(iscomm_Dcuts_plus x).
now apply islapbinop_Dcuts_plus.
Qed.
Lemma iscomm_Dcuts_mult : iscomm Dcuts_mult.
Proof.
intros x y.
apply Dcuts_eq_is_eq ; intro r ; split.
- apply hinhfun. intros xy.
∃ (pr2 (pr1 xy),, pr1 (pr1 xy)) ; repeat split.
rewrite iscomm_multNonnegativeRationals.
exact (pr1 (pr2 xy)).
exact (pr2 (pr2 (pr2 xy))).
exact (pr1 (pr2 (pr2 xy))).
- apply hinhfun ; intros xy.
∃ (pr2 (pr1 xy),, pr1 (pr1 xy)) ; repeat split.
rewrite iscomm_multNonnegativeRationals.
exact (pr1 (pr2 xy)).
exact (pr2 (pr2 (pr2 xy))).
exact (pr1 (pr2 (pr2 xy))).
Qed.
Lemma Dcuts_mult_lt_l :
∏ x x' y : Dcuts, Dcuts_mult x y < Dcuts_mult x' y → x < x'.
Proof.
intros x x' y.
apply hinhuniv ; intros r.
generalize (pr2 (pr2 r)).
apply hinhfun ; intros xy.
∃ (pr1 (pr1 xy)) ; split.
intro H ; apply (pr1 (pr2 r)).
apply hinhpr ; ∃ (pr1 xy).
repeat split.
exact (pr1 (pr2 xy)).
exact H.
exact (pr2 (pr2 (pr2 xy))).
exact (pr1 (pr2 (pr2 xy))).
Qed.
Lemma islapbinop_Dcuts_mult : islapbinop Dcuts_mult.
Proof.
intros y x x'.
apply sumofmaps.
intros Hlt.
- left.
now apply Dcuts_mult_lt_l with y.
- right.
now apply Dcuts_mult_lt_l with y.
Qed.
Lemma israpbinop_Dcuts_mult : israpbinop Dcuts_mult.
Proof.
intros x y y'.
rewrite !(iscomm_Dcuts_mult x).
now apply islapbinop_Dcuts_mult.
Qed.
Lemma isassoc_Dcuts_plus : isassoc Dcuts_plus.
Proof.
intros x y z.
apply Dcuts_eq_is_eq ; intro r ; split.
- apply hinhuniv, sumofmaps ; simpl pr1.
+ apply sumofmaps.
× apply hinhuniv, sumofmaps.
{ apply sumofmaps ; intros Hr.
- now apply hinhpr ; left ; left.
- apply hinhpr ; left ; right.
now apply hinhpr ; left ; left. }
{ intros xy.
apply hinhpr ; right ; ∃ (pr1 xy).
repeat split.
- exact (pr1 (pr2 xy)).
- exact (pr1 (pr2 (pr2 xy))).
- apply hinhpr ; left ; left.
exact (pr2 (pr2 (pr2 xy))). }
× intros Hr.
apply hinhpr ; left ; right.
now apply hinhpr ; left ; right.
+ intros xyz.
generalize (pr1 (pr2 (pr2 xyz))) ; apply hinhuniv, sumofmaps.
× apply sumofmaps ; intros Hxy.
{ apply hinhpr ; right ; ∃ (pr1 xyz).
repeat split.
- exact (pr1 (pr2 xyz)).
- exact Hxy.
- apply hinhpr ; left ; right.
exact (pr2 (pr2 (pr2 xyz))). }
{ apply hinhpr ; left ; right.
apply hinhpr ; right ; ∃ (pr1 xyz).
repeat split.
- exact (pr1 (pr2 xyz)).
- exact Hxy.
- exact (pr2 (pr2 (pr2 xyz))). }
× intros xy.
apply hinhpr ; right ; ∃ (pr1 (pr1 xy),,pr2 (pr1 xy) + pr2 (pr1 xyz)).
repeat split ; simpl.
{ pattern r at 1 ; rewrite (pr1 (pr2 xyz)), (pr1 (pr2 xy)).
now apply isassoc_plusNonnegativeRationals. }
{ exact (pr1 (pr2 (pr2 xy))). }
{ apply hinhpr ; right ; ∃ (pr2 (pr1 xy),,pr2 (pr1 xyz)).
repeat split.
- exact (pr2 (pr2 (pr2 xy))).
- exact (pr2 (pr2 (pr2 xyz))). }
- apply hinhuniv, sumofmaps.
+ apply sumofmaps.
× intros Hr.
apply hinhpr ; left ; left.
now apply hinhpr ; left ; left.
× apply hinhuniv, sumofmaps.
{ apply sumofmaps ; intros Hr.
- apply hinhpr ; left ; left.
now apply hinhpr ; left ; right.
- now apply hinhpr ; left ; right. }
{ intros yz ; simpl in × |-.
apply hinhpr ; right ; ∃ (pr1 yz).
repeat split.
- exact (pr1 (pr2 yz)).
- apply hinhpr ; left ; right.
exact (pr1 (pr2 (pr2 yz))).
- exact (pr2 (pr2 (pr2 yz))). }
+ intros xyz.
generalize (pr2 (pr2 (pr2 xyz))) ; apply hinhuniv, sumofmaps.
× apply sumofmaps ; intros Hyz.
{ apply hinhpr ; left ; left.
apply hinhpr ; right ; ∃ (pr1 xyz).
repeat split.
- exact (pr1 (pr2 xyz)).
- exact (pr1 (pr2 (pr2 xyz))).
- exact Hyz. }
{ apply hinhpr ; right ; ∃ (pr1 xyz).
repeat split.
- exact (pr1 (pr2 xyz)).
- apply hinhpr ; left ; left.
exact (pr1 (pr2 (pr2 xyz))).
- exact Hyz. }
× intros yz.
apply hinhpr ; right ; ∃ ((pr1 (pr1 xyz)+ pr1 (pr1 yz),, pr2 (pr1 yz))).
repeat split ; simpl.
{ pattern r at 1 ; rewrite (pr1 (pr2 xyz)), (pr1 (pr2 yz)).
now rewrite isassoc_plusNonnegativeRationals. }
{ apply hinhpr ; right ; ∃ (pr1 (pr1 xyz),,(pr1 (pr1 yz))).
repeat split.
- exact (pr1 (pr2 (pr2 xyz))).
- exact (pr1 (pr2 (pr2 yz))). }
{ exact (pr2 (pr2 (pr2 yz))). }
Qed.
Lemma islunit_Dcuts_plus_zero : islunit Dcuts_plus 0.
Proof.
intros x.
apply Dcuts_eq_is_eq ; intro r ; split.
- apply hinhuniv, sumofmaps.
+ apply sumofmaps ; intro Hr.
× now apply Dcuts_zero_empty in Hr.
× exact Hr.
+ intros x0.
apply fromempty.
exact (Dcuts_zero_empty _ (pr1 (pr2 (pr2 x0)))).
- intros Hr.
now apply hinhpr ; left ; right.
Qed.
Lemma isrunit_Dcuts_plus_zero : isrunit Dcuts_plus 0.
Proof.
intros x.
rewrite iscomm_Dcuts_plus.
now apply islunit_Dcuts_plus_zero.
Qed.
Lemma isassoc_Dcuts_mult : isassoc Dcuts_mult.
Proof.
intros x y z.
apply Dcuts_eq_is_eq ; intro r ; split.
- apply hinhuniv ; intros xyz.
generalize (pr1 (pr2 (pr2 xyz))).
apply hinhfun ; intros xy.
pattern r at 1 ; rewrite (pr1 (pr2 xyz)), (pr1 (pr2 xy)), isassoc_multNonnegativeRationals.
∃ (pr1 (pr1 xy),,(pr2 (pr1 xy) × pr2 (pr1 xyz))) ; simpl ; repeat split.
+ exact (pr1 (pr2 (pr2 xy))).
+ apply hinhpr ; ∃ (pr2 (pr1 xy),,pr2 (pr1 (xyz))).
repeat split.
exact (pr2 (pr2 (pr2 xy))).
exact (pr2 (pr2 (pr2 xyz))).
- apply hinhuniv ; intros xyz.
generalize (pr2 (pr2 (pr2 xyz))).
apply hinhfun ; intros yz.
pattern r at 1 ; rewrite (pr1 (pr2 xyz)), (pr1 (pr2 yz)), <- isassoc_multNonnegativeRationals.
∃ ((pr1 (pr1 xyz) × pr1 (pr1 yz)) ,, pr2 (pr1 yz)) ; simpl ; repeat split.
+ apply hinhpr ; ∃ (pr1 (pr1 xyz),,pr1 (pr1 yz)).
repeat split.
exact (pr1 (pr2 (pr2 xyz))).
exact (pr1 (pr2 (pr2 yz))).
+ exact (pr2 (pr2 (pr2 yz))).
Qed.
Lemma islunit_Dcuts_mult_one : islunit Dcuts_mult Dcuts_one.
Proof.
intros x.
apply Dcuts_eq_is_eq ; intro r ; split.
- apply hinhuniv ; intros ix.
apply is_Dcuts_bot with (1 := pr2 (pr2 (pr2 ix))).
pattern r at 1 ; rewrite (pr1 (pr2 ix)), iscomm_multNonnegativeRationals.
apply multNonnegativeRationals_le1_r, lt_leNonnegativeRationals.
exact (pr1 (pr2 (pr2 ix))).
- intros Xr.
generalize (is_Dcuts_open x r Xr).
apply hinhfun ; intros q.
∃ ((r/pr1 q)%NRat,,pr1 q) ; repeat split.
+ simpl.
rewrite iscomm_multNonnegativeRationals, multdivNonnegativeRationals.
reflexivity.
apply istrans_le_lt_ltNonnegativeRationals with (2 := pr2 (pr2 q)).
apply isnonnegative_NonnegativeRationals.
+ change (r / pr1 q < 1)%NRat.
apply_pr2 (multNonnegativeRationals_ltcompat_l (pr1 q)).
apply istrans_le_lt_ltNonnegativeRationals with (2 := pr2 (pr2 q)).
apply isnonnegative_NonnegativeRationals.
rewrite multdivNonnegativeRationals, isrunit_oneNonnegativeRationals.
exact (pr2 (pr2 q)).
apply istrans_le_lt_ltNonnegativeRationals with (2 := pr2 (pr2 q)).
apply isnonnegative_NonnegativeRationals.
+ exact (pr1 (pr2 q)).
Qed.
Lemma isrunit_Dcuts_mult_one : isrunit Dcuts_mult Dcuts_one.
Proof.
intros x.
rewrite iscomm_Dcuts_mult.
now apply islunit_Dcuts_mult_one.
Qed.
Lemma islabsorb_Dcuts_mult_zero :
∏ x : Dcuts, Dcuts_mult Dcuts_zero x = Dcuts_zero.
Proof.
intros x.
apply Dcuts_eq_is_eq ; intro r ; split.
- apply hinhuniv ; intros ix.
apply fromempty.
now apply (Dcuts_zero_empty _ (pr1 (pr2 (pr2 ix)))).
- intro Hr.
now apply Dcuts_zero_empty in Hr.
Qed.
Lemma israbsorb_Dcuts_mult_zero :
∏ x : Dcuts, Dcuts_mult x Dcuts_zero = Dcuts_zero.
Proof.
intros x.
rewrite iscomm_Dcuts_mult.
now apply islabsorb_Dcuts_mult_zero.
Qed.
Lemma isldistr_Dcuts_plus_mult : isldistr Dcuts_plus Dcuts_mult.
Proof.
intros x y z.
apply Dcuts_eq_is_eq ; intro r ; split.
- apply hinhuniv ; intros xyz.
rewrite (pr1 (pr2 xyz)).
generalize (pr2 (pr2 (pr2 xyz))).
apply hinhfun ; apply sumofmaps ;
[ apply sumofmaps ; [intros Xr | intros Yr]
| intros xy ].
+ left ; left ; apply hinhpr.
∃ (pr1 xyz) ; repeat split.
exact (pr1 (pr2 (pr2 xyz))).
exact Xr.
+ left ; right ; apply hinhpr.
∃ (pr1 xyz) ; repeat split.
exact (pr1 (pr2 (pr2 xyz))).
exact Yr.
+ rewrite (pr1 (pr2 xy)), isldistr_mult_plusNonnegativeRationals.
right ;
∃ (pr1 (pr1 xyz) × pr1 (pr1 xy),, pr1 (pr1 xyz) × pr2 (pr1 xy)) ; repeat split.
× apply hinhpr ; ∃ (pr1 (pr1 xyz),,pr1 (pr1 xy)).
repeat split.
exact (pr1 (pr2 (pr2 xyz))).
exact (pr1 (pr2 (pr2 xy))).
× apply hinhpr ; ∃ (pr1 (pr1 xyz),,pr2 (pr1 xy)).
repeat split.
exact (pr1 (pr2 (pr2 xyz))).
exact (pr2 (pr2 (pr2 xy))).
- apply hinhuniv ; apply sumofmaps ;
[ apply sumofmaps | intros zxzy ].
+ apply hinhfun ; intros zx.
rewrite (pr1 (pr2 zx)).
∃ (pr1 zx) ; repeat split.
× exact (pr1 (pr2 (pr2 zx))).
× apply hinhpr ; left ; left.
exact (pr2 (pr2 (pr2 zx))).
+ apply hinhfun ; intros zy.
rewrite (pr1 (pr2 zy)).
∃ (pr1 zy) ; repeat split.
× exact (pr1 (pr2 (pr2 zy))).
× apply hinhpr ; left ; right.
exact (pr2 (pr2 (pr2 zy))).
+ rewrite (pr1 (pr2 zxzy)).
generalize (pr1 (pr2 (pr2 zxzy))) (pr2 (pr2 (pr2 zxzy))).
apply hinhfun2 ; intros zx zy.
rewrite (pr1 (pr2 zx)), (pr1 (pr2 zy)).
generalize (isdecrel_leNonnegativeRationals (NQmax (pr1 (pr1 zx)) (pr1 (pr1 zy))) 0%NRat) ;
apply sumofmaps ; [intros Heq| intros Hlt].
apply NonnegativeRationals_eq0_le0 in Heq.
× apply NQmax_eq_zero in Heq.
rewrite (pr1 Heq), (pr2 Heq).
∃ (0%NRat,,pr2 (pr1 zx)) ; simpl ; repeat split.
rewrite !islabsorb_zero_multNonnegativeRationals.
now apply isrunit_zeroNonnegativeRationals.
apply (is_Dcuts_bot _ _ (pr1 (pr2 (pr2 zx)))).
apply isnonnegative_NonnegativeRationals.
apply hinhpr ; left ; left.
exact (pr2 (pr2 (pr2 zx))).
× apply notge_ltNonnegativeRationals in Hlt.
∃ (NQmax (pr1 (pr1 zx)) (pr1 (pr1 zy)),, (pr1 (pr1 zx) × pr2 (pr1 zx) / NQmax (pr1 (pr1 zx)) (pr1 (pr1 zy)) + (pr1 (pr1 zy) × pr2 (pr1 zy) / NQmax (pr1 (pr1 zx)) (pr1 (pr1 zy))))) ;
simpl ; repeat split.
unfold divNonnegativeRationals.
rewrite <- isrdistr_mult_plusNonnegativeRationals.
now apply pathsinv0, multdivNonnegativeRationals.
apply NQmax_case.
exact (pr1 (pr2 (pr2 zx))).
exact (pr1 (pr2 (pr2 zy))).
apply hinhpr ; right.
∃ (pr1 (pr1 zx) × pr2 (pr1 zx) / NQmax (pr1 (pr1 zx)) (pr1 (pr1 zy)) ,,
pr1 (pr1 zy) × pr2 (pr1 zy) / NQmax (pr1 (pr1 zx)) (pr1 (pr1 zy))) ; simpl ; repeat split.
apply is_Dcuts_bot with (1 := pr2 (pr2 (pr2 zx))).
rewrite iscomm_multNonnegativeRationals.
unfold divNonnegativeRationals ;
rewrite isassoc_multNonnegativeRationals.
apply multNonnegativeRationals_le1_r, divNonnegativeRationals_le1.
now apply NQmax_le_l.
apply is_Dcuts_bot with (1 := pr2 (pr2 (pr2 zy))).
rewrite iscomm_multNonnegativeRationals.
unfold divNonnegativeRationals ;
rewrite isassoc_multNonnegativeRationals.
apply multNonnegativeRationals_le1_r, divNonnegativeRationals_le1.
now apply NQmax_le_r.
Qed.
Lemma isrdistr_Dcuts_plus_mult : isrdistr Dcuts_plus Dcuts_mult.
Proof.
intros x y z.
rewrite <- ! (iscomm_Dcuts_mult z).
now apply isldistr_Dcuts_plus_mult.
Qed.
Lemma Dcuts_ap_one_zero : 1 ≠ 0.
Proof.
apply isapfun_NonnegativeRationals_to_Dcuts'.
apply gtNonnegativeRationals_noteq.
exact ispositive_oneNonnegativeRationals.
Qed.
Definition islinv_Dcuts_inv :
∏ x : Dcuts, ∏ Hx0 : x ≠ 0, Dcuts_mult (Dcuts_inv x Hx0) x = 1.
Proof.
intros x Hx0.
apply Dcuts_eq_is_eq ; intros q ; split.
- apply hinhuniv ; intros xy.
rewrite (pr1 (pr2 xy)).
generalize (pr1 (pr2 (pr2 xy))).
apply hinhuniv ; intros l.
change (pr1 (pr1 xy) × pr2 (pr1 xy) < 1)%NRat.
apply istrans_le_lt_ltNonnegativeRationals with (pr1 l).
apply (pr1 (pr2 l)).
exact (pr2 (pr2 (pr2 xy))).
exact (pr2 (pr2 (pr2 l))).
- change (q ∈ 1) with (q < 1)%NRat ; intro Hq.
generalize Hx0 ; intro Hx.
apply_pr2_in Dcuts_apzero_notempty Hx0.
generalize (eq0orgt0NonnegativeRationals q) ; apply sumofmaps ; intros Hq0.
+ rewrite Hq0.
apply hinhpr.
∃ (0%NRat,,0%NRat) ; repeat split.
× simpl ; now rewrite islabsorb_zero_multNonnegativeRationals.
× apply hinhpr.
∃ (/ 2)%NRat ; split.
simpl pr1 ; intros.
rewrite islabsorb_zero_multNonnegativeRationals.
now apply isnonnegative_NonnegativeRationals.
split.
apply (pr1 (ispositive_invNonnegativeRationals _)).
exact ispositive_twoNonnegativeRationals.
apply_pr2 (multNonnegativeRationals_ltcompat_l 2%NRat).
exact ispositive_twoNonnegativeRationals.
rewrite isrunit_oneNonnegativeRationals, isrinv_NonnegativeRationals.
exact one_lt_twoNonnegativeRationals.
exact ispositive_twoNonnegativeRationals.
× exact Hx0.
+ generalize (is_Dcuts_open _ _ Hx0).
apply hinhuniv ; intros r.
apply between_ltNonnegativeRationals in Hq.
rename Hq into t.
set (c := pr1 r × (/ pr1 t - 1)%NRat).
assert (Hc0 : (0 < c)%NRat).
{ unfold c.
apply ispositive_multNonnegativeRationals.
exact (pr2 (pr2 r)).
apply ispositive_minusNonnegativeRationals.
apply_pr2 (multNonnegativeRationals_ltcompat_l (pr1 t)).
apply istrans_ltNonnegativeRationals with q.
exact Hq0.
exact (pr1 (pr2 t)).
rewrite isrunit_oneNonnegativeRationals, isrinv_NonnegativeRationals.
exact (pr2 (pr2 t)).
apply istrans_ltNonnegativeRationals with q.
exact Hq0.
exact (pr1 (pr2 t)). }
generalize (Dcuts_def_corr_not_empty _ Hx0 (is_Dcuts_corr x) _ Hc0).
apply hinhfun ; intros r'.
∃ ((q × / (NQmax (pr1 r) (pr1 r')))%NRat,,NQmax (pr1 r) (pr1 r')) ; repeat split.
× simpl.
rewrite isassoc_multNonnegativeRationals, islinv_NonnegativeRationals, isrunit_oneNonnegativeRationals.
reflexivity.
apply istrans_lt_le_ltNonnegativeRationals with (pr1 r).
exact (pr2 (pr2 r)).
now apply NQmax_le_l.
× apply hinhpr ; simpl pr1.
∃ (q / NQmax (pr1 r) (pr1 r') × (NQmax (pr1 r) (pr1 r') + c))%NRat.
repeat split.
intros rx Xrx.
apply multNonnegativeRationals_lecompat_l, lt_leNonnegativeRationals.
apply (Dcuts_finite x).
intro H ; apply (pr2 (pr2 r')).
apply is_Dcuts_bot with (1 := H).
now apply plusNonnegativeRationals_lecompat_r ; apply NQmax_le_r.
exact Xrx.
apply ispositive_multNonnegativeRationals.
apply ispositive_divNonnegativeRationals.
exact Hq0.
apply istrans_lt_le_ltNonnegativeRationals with (pr1 r).
exact (pr2 (pr2 r)).
now apply NQmax_le_l.
rewrite iscomm_plusNonnegativeRationals.
now apply ispositive_plusNonnegativeRationals_l.
unfold divNonnegativeRationals.
apply_pr2 (multNonnegativeRationals_ltcompat_l (/ q)%NRat).
now apply ispositive_invNonnegativeRationals.
rewrite isrunit_oneNonnegativeRationals, <- !isassoc_multNonnegativeRationals, islinv_NonnegativeRationals, islunit_oneNonnegativeRationals.
2: exact Hq0.
apply_pr2 (multNonnegativeRationals_ltcompat_l (NQmax (pr1 r) (pr1 r'))).
apply istrans_lt_le_ltNonnegativeRationals with (pr1 r).
exact (pr2 (pr2 r)).
now apply NQmax_le_l.
rewrite <- !isassoc_multNonnegativeRationals, isrinv_NonnegativeRationals, islunit_oneNonnegativeRationals.
2: apply istrans_lt_le_ltNonnegativeRationals with (pr1 r).
2: exact (pr2 (pr2 r)).
2: now apply NQmax_le_l.
apply (minusNonnegativeRationals_ltcompat_l' _ _ (NQmax (pr1 r) (pr1 r') × 1)%NRat).
rewrite <- isldistr_mult_minusNonnegativeRationals, isrunit_oneNonnegativeRationals, plusNonnegativeRationals_minus_l.
unfold c.
apply multNonnegativeRationals_le_lt.
exact (pr2 (pr2 r)).
now apply NQmax_le_l.
apply_pr2 (multNonnegativeRationals_ltcompat_l q).
exact Hq0.
rewrite !isldistr_mult_minusNonnegativeRationals, isrinv_NonnegativeRationals, isrunit_oneNonnegativeRationals.
2: exact Hq0.
apply_pr2 (multNonnegativeRationals_ltcompat_r (pr1 t)).
apply istrans_ltNonnegativeRationals with q.
exact Hq0.
exact (pr1 (pr2 t)).
rewrite !isrdistr_mult_minusNonnegativeRationals, isassoc_multNonnegativeRationals, islinv_NonnegativeRationals, isrunit_oneNonnegativeRationals, islunit_oneNonnegativeRationals.
2: apply istrans_ltNonnegativeRationals with q.
apply minusNonnegativeRationals_ltcompat_l.
exact (pr1 (pr2 t)).
pattern t at 1 ;
rewrite <- (islunit_oneNonnegativeRationals (pr1 t)).
apply multNonnegativeRationals_ltcompat_r.
apply istrans_ltNonnegativeRationals with q.
exact Hq0.
exact (pr1 (pr2 t)).
apply istrans_ltNonnegativeRationals with (pr1 t).
exact (pr1 (pr2 t)).
exact (pr2 (pr2 t)).
exact Hq0.
exact (pr1 (pr2 t)).
× simpl.
apply NQmax_case.
exact (pr1 (pr2 r)).
exact (pr1 (pr2 r')).
Qed.
Lemma isrinv_Dcuts_inv :
∏ x : Dcuts, ∏ Hx0 : x ≠ 0, Dcuts_mult x (Dcuts_inv x Hx0) = 1.
Proof.
intros x Hx0.
rewrite iscomm_Dcuts_mult.
now apply islinv_Dcuts_inv.
Qed.
Lemma Dcuts_plus_ltcompat_l :
∏ x y z: Dcuts, (y < z) ↔ (Dcuts_plus y x < Dcuts_plus z x).
Proof.
intros x y z.
split.
- apply hinhuniv ; intros r.
generalize (is_Dcuts_open _ _ (pr2 (pr2 r))) ; apply hinhuniv ; intros r'.
generalize (pr1 r') (pr1 (pr2 r')) (pr2 (pr2 r')) ; clear r' ; intros r' Zr' Hr.
apply ispositive_minusNonnegativeRationals in Hr.
generalize (is_Dcuts_corr x _ Hr).
apply hinhuniv ; apply sumofmaps ; [intros nXc | ].
+ apply hinhpr ; ∃ r' ; split.
× unfold neg ; apply (hinhuniv (P := hProppair _ isapropempty)) ; apply sumofmaps ;
[apply sumofmaps ; [intros Yr' | intros Xr'] | intros yx ].
apply (pr1 (pr2 r)), is_Dcuts_bot with (1 := Yr'), lt_leNonnegativeRationals.
now apply_pr2 ispositive_minusNonnegativeRationals.
apply nXc, is_Dcuts_bot with (1 := Xr'), minusNonnegativeRationals_le.
generalize (pr1 (pr2 yx)) ; apply gtNonnegativeRationals_noteq.
pattern r' at 1 ; rewrite <- (minusNonnegativeRationals_plus_r (pr1 r) r'), iscomm_plusNonnegativeRationals.
apply plusNonnegativeRationals_ltcompat.
apply (Dcuts_finite y).
exact (pr1 (pr2 r)).
exact (pr1 (pr2 (pr2 yx))).
apply (Dcuts_finite x).
exact nXc.
exact (pr2 (pr2 (pr2 yx))).
apply lt_leNonnegativeRationals.
now apply_pr2 ispositive_minusNonnegativeRationals.
× now apply hinhpr ; left ; left.
+ intros q.
generalize (pr1 q) (pr1 (pr2 q)) (pr2 (pr2 q)) ;
clear q ;
intros q Xq nXq.
apply hinhpr.
∃ (r' + q)%NRat ; split.
× unfold neg ; apply (hinhuniv (P := hProppair _ isapropempty)) ; apply sumofmaps ; [ apply sumofmaps ; [ intros Yr' | intros Xr'] | intros yx ].
apply (pr1 (pr2 r)), is_Dcuts_bot with (1 := Yr'), lt_leNonnegativeRationals.
rewrite <- (isrunit_zeroNonnegativeRationals (pr1 r)).
apply plusNonnegativeRationals_lt_le_ltcompat.
now apply_pr2 ispositive_minusNonnegativeRationals.
now apply isnonnegative_NonnegativeRationals.
apply nXq, is_Dcuts_bot with (1 := Xr').
rewrite iscomm_plusNonnegativeRationals.
apply plusNonnegativeRationals_lecompat_r.
now apply minusNonnegativeRationals_le.
generalize (pr1 (pr2 yx)) ; apply gtNonnegativeRationals_noteq.
pattern (r' + q) at 1 ;
rewrite (iscomm_plusNonnegativeRationals r' q).
pattern r' at 1 ;
rewrite <- (minusNonnegativeRationals_plus_r (pr1 r) r'), <- isassoc_plusNonnegativeRationals, iscomm_plusNonnegativeRationals.
apply plusNonnegativeRationals_ltcompat.
apply (Dcuts_finite y).
exact (pr1 (pr2 r)).
exact (pr1 (pr2 (pr2 yx))).
apply (Dcuts_finite x).
exact nXq.
exact (pr2 (pr2 (pr2 yx))).
apply lt_leNonnegativeRationals.
now apply_pr2 ispositive_minusNonnegativeRationals.
× apply hinhpr ; right ; ∃ (r',,q) ; repeat split.
exact Zr'.
exact Xq.
- now apply Dcuts_plus_lt_l.
Qed.
Lemma Dcuts_plus_lecompat_l :
∏ x y z: Dcuts, (y ≤ z) ↔ (Dcuts_plus y x ≤ Dcuts_plus z x).
Proof.
intros x y z.
split.
- intros H ; apply Dcuts_nlt_ge ; intro H0 ; apply (pr2 (Dcuts_nlt_ge _ _) H).
now apply_pr2 (Dcuts_plus_ltcompat_l x).
- intros H ; apply Dcuts_nlt_ge ; intro H0 ; apply (pr2 (Dcuts_nlt_ge _ _) H).
now apply Dcuts_plus_ltcompat_l.
Qed.
Lemma Dcuts_plus_ltcompat_r :
∏ x y z: Dcuts, (y < z) ↔ (Dcuts_plus x y < Dcuts_plus x z).
Proof.
intros x y z.
rewrite ! (iscomm_Dcuts_plus x).
now apply Dcuts_plus_ltcompat_l.
Qed.
Lemma Dcuts_plus_lecompat_r :
∏ x y z: Dcuts, (y ≤ z) ↔ (Dcuts_plus x y ≤ Dcuts_plus x z).
Proof.
intros x y z.
rewrite ! (iscomm_Dcuts_plus x).
now apply Dcuts_plus_lecompat_l.
Qed.
Lemma Dcuts_plus_le_l :
∏ x y, x ≤ Dcuts_plus x y.
Proof.
intros x y r Xr.
now apply hinhpr ; left ; left.
Qed.
Lemma Dcuts_plus_le_r :
∏ x y, y ≤ Dcuts_plus x y.
Proof.
intros x y r Xr.
now apply hinhpr ; left ; right.
Qed.
Lemma Dcuts_mult_ltcompat_l :
∏ x y z: Dcuts, (0 < x) → (y < z) → (Dcuts_mult y x < Dcuts_mult z x).
Proof.
intros X Y Z.
apply hinhuniv2 ; intros x r.
generalize (is_Dcuts_bot _ _ (pr2 (pr2 x)) _ (isnonnegative_NonnegativeRationals _)) ; clear x ; intro X0.
induction (eq0orgt0NonnegativeRationals (pr1 r)) as [Hr0 | Hr0].
- apply hinhpr ; ∃ 0%NRat ; split.
+ unfold neg ; apply (hinhuniv (P := hProppair _ isapropempty)) ; intros yx.
apply (pr1 (pr2 r)).
rewrite Hr0.
apply is_Dcuts_bot with (1 := pr1 (pr2 (pr2 yx))).
now apply isnonnegative_NonnegativeRationals.
+ apply hinhpr ; ∃ (pr1 r,,0%NRat) ; simpl ; repeat split.
now rewrite israbsorb_zero_multNonnegativeRationals.
exact (pr2 (pr2 r)).
exact X0.
- generalize (is_Dcuts_open _ _ X0) ; apply hinhuniv ; intros x.
generalize (is_Dcuts_open _ _ (pr2 (pr2 r))) ; apply hinhuniv ; intros r'.
set (c := ((pr1 r' - pr1 r) / pr1 r × pr1 x)%NRat).
assert (Hc0 : (0 < c)%NRat).
{ unfold c.
apply ispositive_multNonnegativeRationals.
apply ispositive_divNonnegativeRationals.
apply ispositive_minusNonnegativeRationals.
exact (pr2 (pr2 r')).
exact Hr0.
exact (pr2 (pr2 x)). }
generalize (Dcuts_def_corr_not_empty _ X0 (is_Dcuts_corr _) _ Hc0) ; apply hinhfun ; intros x'.
∃ (pr1 r × (NQmax (pr1 x) (pr1 x') + c))%NRat ; split.
+ unfold neg ; apply (hinhuniv (P := hProppair _ isapropempty)) ; intros yx.
generalize (pr1 (pr2 yx)) ; apply gtNonnegativeRationals_noteq.
apply multNonnegativeRationals_ltcompat.
apply (Dcuts_finite Y).
exact (pr1 (pr2 r)).
exact (pr1 (pr2 (pr2 yx))).
apply (Dcuts_finite X).
intro ; apply (pr2 (pr2 x')).
apply is_Dcuts_bot with (1 := X1).
apply plusNonnegativeRationals_lecompat_r.
now apply NQmax_le_r.
exact (pr2 (pr2 (pr2 yx))).
+ apply hinhpr ; ∃ (pr1 r',,((pr1 r × (NQmax (pr1 x) (pr1 x') + c)) / (pr1 r'))%NRat) ; simpl ; repeat split.
× rewrite multdivNonnegativeRationals.
reflexivity.
apply istrans_le_lt_ltNonnegativeRationals with (pr1 r).
exact (isnonnegative_NonnegativeRationals _).
exact (pr2 (pr2 r')).
× exact (pr1 (pr2 r')).
× apply (is_Dcuts_bot _ (NQmax (pr1 x) (pr1 x'))%NRat).
apply NQmax_case.
exact (pr1 (pr2 x)).
exact (pr1 (pr2 x')).
apply multNonnegativeRationals_lecompat_r' with (pr1 r').
apply istrans_le_lt_ltNonnegativeRationals with (pr1 r).
exact (isnonnegative_NonnegativeRationals _).
exact (pr2 (pr2 r')).
unfold divNonnegativeRationals.
rewrite !isassoc_multNonnegativeRationals, islinv_NonnegativeRationals, isrunit_oneNonnegativeRationals, isldistr_mult_plusNonnegativeRationals, iscomm_multNonnegativeRationals.
apply (minusNonnegativeRationals_lecompat_l' (NQmax (pr1 x) (pr1 x') × pr1 r)%NRat).
apply multNonnegativeRationals_lecompat_l, lt_leNonnegativeRationals.
exact (pr2 (pr2 r')).
rewrite plusNonnegativeRationals_minus_l.
rewrite <- isldistr_mult_minusNonnegativeRationals, iscomm_multNonnegativeRationals.
apply multNonnegativeRationals_lecompat_r' with (/ pr1 r).
now apply ispositive_invNonnegativeRationals.
rewrite !isassoc_multNonnegativeRationals, isrinv_NonnegativeRationals, isrunit_oneNonnegativeRationals, iscomm_multNonnegativeRationals.
apply multNonnegativeRationals_lecompat_l.
now apply NQmax_le_l.
exact Hr0.
apply istrans_ltNonnegativeRationals with (pr1 r).
exact Hr0.
exact (pr2 (pr2 r')).
Qed.
Lemma Dcuts_mult_ltcompat_l' :
∏ x y z: Dcuts, (Dcuts_mult y x < Dcuts_mult z x) → (y < z).
Proof.
intros x y z.
now apply Dcuts_mult_lt_l.
Qed.
Lemma Dcuts_mult_lecompat_l :
∏ x y z: Dcuts, (0 < x) → (Dcuts_mult y x ≤ Dcuts_mult z x) → (y ≤ z).
Proof.
intros x y z Hx0.
intros H ; apply Dcuts_nlt_ge ; intro H0 ; apply (pr2 (Dcuts_nlt_ge _ _) H).
now apply Dcuts_mult_ltcompat_l.
Qed.
Lemma Dcuts_mult_lecompat_l' :
∏ x y z: Dcuts, (y ≤ z) → (Dcuts_mult y x ≤ Dcuts_mult z x).
Proof.
intros x y z.
intros H ; apply Dcuts_nlt_ge ; intro H0 ; apply (pr2 (Dcuts_nlt_ge _ _) H).
now apply (Dcuts_mult_ltcompat_l' x).
Qed.
Lemma Dcuts_mult_ltcompat_r :
∏ x y z: Dcuts, (0 < x) → (y < z) → (Dcuts_mult x y < Dcuts_mult x z).
Proof.
intros x y z.
rewrite ! (iscomm_Dcuts_mult x).
now apply Dcuts_mult_ltcompat_l.
Qed.
Lemma Dcuts_mult_ltcompat_r' :
∏ x y z: Dcuts, (Dcuts_mult x y < Dcuts_mult x z) → (y < z).
Proof.
intros x y z.
rewrite ! (iscomm_Dcuts_mult x).
now apply Dcuts_mult_ltcompat_l'.
Qed.
Lemma Dcuts_mult_lecompat_r :
∏ x y z: Dcuts, (0 < x) → (Dcuts_mult x y ≤ Dcuts_mult x z) → (y ≤ z).
Proof.
intros x y z.
rewrite ! (iscomm_Dcuts_mult x).
now apply Dcuts_mult_lecompat_l.
Qed.
Lemma Dcuts_mult_lecompat_r' :
∏ x y z: Dcuts, (y ≤ z) → (Dcuts_mult x y ≤ Dcuts_mult x z).
Proof.
intros x y z.
rewrite ! (iscomm_Dcuts_mult x).
now apply Dcuts_mult_lecompat_l'.
Qed.
Lemma Dcuts_plus_double :
∏ x : Dcuts, Dcuts_plus x x = Dcuts_mult Dcuts_two x.
Proof.
intros x.
rewrite <- (Dcuts_NQmult_mult _ _ ispositive_twoNonnegativeRationals).
apply Dcuts_eq_is_eq.
intros r ; split.
- apply hinhfun ; apply sumofmaps ; [ apply sumofmaps ; intros Xr | intros xy ; rewrite (pr1 (pr2 xy))].
+ ∃ (r / 2)%NRat.
simpl ; split.
× apply pathsinv0, multdivNonnegativeRationals.
exact ispositive_twoNonnegativeRationals.
× apply is_Dcuts_bot with (1 := Xr).
pattern r at 2 ; rewrite (NQhalf_double r).
apply plusNonnegativeRationals_le_l.
+ ∃ (r / 2)%NRat.
simpl ; split.
× apply pathsinv0, multdivNonnegativeRationals.
exact ispositive_twoNonnegativeRationals.
× apply is_Dcuts_bot with (1 := Xr).
pattern r at 2 ; rewrite (NQhalf_double r).
apply plusNonnegativeRationals_le_l.
+ ∃ ((pr1 (pr1 xy) + pr2 (pr1 xy)) / 2)%NRat.
split.
× apply pathsinv0, multdivNonnegativeRationals.
exact ispositive_twoNonnegativeRationals.
× generalize (isdecrel_ltNonnegativeRationals (pr1 (pr1 xy)) (pr2 (pr1 xy))) ; apply sumofmaps ; intros H.
apply is_Dcuts_bot with (1 := pr2 (pr2 (pr2 xy))).
pattern (pr2 (pr1 xy)) at 2 ; rewrite (NQhalf_double (pr2 (pr1 xy))).
unfold divNonnegativeRationals.
rewrite isrdistr_mult_plusNonnegativeRationals.
apply plusNonnegativeRationals_lecompat_r.
apply multNonnegativeRationals_lecompat_r.
now apply lt_leNonnegativeRationals.
apply is_Dcuts_bot with (1 := pr1 (pr2 (pr2 xy))).
pattern (pr1 (pr1 xy)) at 2 ; rewrite (NQhalf_double (pr1 (pr1 xy))).
unfold divNonnegativeRationals.
rewrite isrdistr_mult_plusNonnegativeRationals.
apply plusNonnegativeRationals_lecompat_l.
apply multNonnegativeRationals_lecompat_r.
now apply notlt_geNonnegativeRationals.
- apply hinhfun ; intros q ; rewrite (pr1 (pr2 q)).
right.
∃ (pr1 q,,pr1 q).
repeat split.
+ assert (X : (2 = 1+1)%NRat).
{ apply subtypeEquality_prop ; simpl.
apply hq2eq1plus1. }
pattern 2%NRat at 1 ; rewrite X ; clear X.
rewrite isrdistr_mult_plusNonnegativeRationals, islunit_oneNonnegativeRationals.
reflexivity.
+ exact (pr2 (pr2 q)).
+ exact (pr2 (pr2 q)).
Qed.
Definition Dcuts_setwith2binop : setwith2binop.
Proof.
∃ Dcuts.
split.
- exact Dcuts_plus.
- exact Dcuts_mult.
Defined.
Definition isabmonoidop_Dcuts_plus : isabmonoidop Dcuts_plus.
Proof.
repeat split.
- exact isassoc_Dcuts_plus.
- ∃ Dcuts_zero.
split.
+ exact islunit_Dcuts_plus_zero.
+ exact isrunit_Dcuts_plus_zero.
- exact iscomm_Dcuts_plus.
Defined.
Definition ismonoidop_Dcuts_mult : ismonoidop Dcuts_mult.
Proof.
split.
- exact isassoc_Dcuts_mult.
- ∃ Dcuts_one.
split.
+ exact islunit_Dcuts_mult_one.
+ exact isrunit_Dcuts_mult_one.
Defined.
Definition Dcuts_commrig : commrig.
Proof.
∃ Dcuts_setwith2binop.
repeat split.
- ∃ (isabmonoidop_Dcuts_plus,,ismonoidop_Dcuts_mult).
split.
+ exact islabsorb_Dcuts_mult_zero.
+ exact israbsorb_Dcuts_mult_zero.
- exact isldistr_Dcuts_plus_mult.
- exact isrdistr_Dcuts_plus_mult.
- exact iscomm_Dcuts_mult.
Defined.
Definition Dcuts_ConstructiveCommutativeDivisionRig : ConstructiveCommutativeDivisionRig.
Proof.
∃ Dcuts_commrig.
∃ (pr2 Dcuts).
repeat split.
- exact islapbinop_Dcuts_plus.
- exact israpbinop_Dcuts_plus.
- exact islapbinop_Dcuts_mult.
- exact israpbinop_Dcuts_mult.
- exact Dcuts_ap_one_zero.
- intros x Hx.
∃ (Dcuts_inv x Hx) ; split.
+ exact (islinv_Dcuts_inv x Hx).
+ exact (isrinv_Dcuts_inv x Hx).
Defined.
Section Dcuts_minus.
Context (X : hsubtype NonnegativeRationals).
Context (X_bot : Dcuts_def_bot X).
Context (X_open : Dcuts_def_open X).
Context (X_corr : Dcuts_def_corr X).
Context (Y : hsubtype NonnegativeRationals).
Context (Y_bot : Dcuts_def_bot Y).
Context (Y_open : Dcuts_def_open Y).
Context (Y_corr : Dcuts_def_corr Y).
Definition Dcuts_minus_val : hsubtype NonnegativeRationals :=
λ r, ∃ x, X x × ∏ y, (Y y) ⨿ (y = 0%NRat) → (r + y < x)%NRat.
Lemma Dcuts_minus_bot : Dcuts_def_bot Dcuts_minus_val.
Proof.
intros r Hr q Hle.
revert Hr ; apply hinhfun ; intros x.
∃ (pr1 x) ; split.
- exact (pr1 (pr2 x)).
- intros y Yy.
apply istrans_le_lt_ltNonnegativeRationals with (r + y).
apply plusNonnegativeRationals_lecompat_r.
exact Hle.
now apply (pr2 (pr2 x)).
Qed.
Lemma Dcuts_minus_open : Dcuts_def_open Dcuts_minus_val.
Proof.
intros r.
apply hinhuniv ; intros x.
generalize (X_open _ (pr1 (pr2 x))).
apply hinhfun ; intros x'.
∃ (r + (pr1 x' - pr1 x)) ; split.
- apply hinhpr ; ∃ (pr1 x') ; split.
+ exact (pr1 (pr2 x')).
+ intros y Yy.
pattern (pr1 x') at 2 ;
rewrite <- (minusNonnegativeRationals_plus_r _ _ (lt_leNonnegativeRationals _ _ (pr2 (pr2 x')))).
rewrite (iscomm_plusNonnegativeRationals r), isassoc_plusNonnegativeRationals.
apply plusNonnegativeRationals_ltcompat_l.
now apply (pr2 (pr2 x)).
- apply plusNonnegativeRationals_lt_r.
apply ispositive_minusNonnegativeRationals.
exact (pr2 (pr2 x')).
Qed.
Lemma Dcuts_minus_corr : Dcuts_def_corr Dcuts_minus_val.
Proof.
assert (Y_corr' : Dcuts_def_corr (λ y, Y y ∨ (y = 0%NRat))).
{ intros c Hc.
generalize (Y_corr c Hc) ; apply hinhfun ; apply sumofmaps ; [intros Yc | intros y ].
- left.
intros H ; apply Yc ; clear Yc ; revert H.
apply hinhuniv ; apply sumofmaps ; [intros Yc | intros Hc0].
+ exact Yc.
+ rewrite Hc0 in Hc.
now apply fromempty, (isirrefl_ltNonnegativeRationals 0%NRat).
- right.
∃ (pr1 y) ; split.
+ apply hinhpr ; left.
exact (pr1 (pr2 y)).
+ intros H ; apply (pr2 (pr2 y)) ; revert H.
apply hinhuniv ; apply sumofmaps ; [intros H | intros Hc0].
× exact H.
× apply fromempty ; revert Hc0.
apply gtNonnegativeRationals_noteq.
now apply ispositive_plusNonnegativeRationals_r. }
intros c Hc.
apply ispositive_NQhalf in Hc.
apply (λ X X0 Xerr, Dcuts_def_corr_not_empty X X0 Xerr _ Hc) in Y_corr'.
revert Y_corr' ; apply hinhuniv ; intros y.
generalize (pr1 (pr2 y)) ; apply hinhuniv ; intros Yy.
assert (X0 : ¬ Y (pr1 y + c / 2%NRat)).
{ intro ; apply (pr2 (pr2 y)).
now apply hinhpr ; left. }
rename X0 into nYy.
generalize (X_corr _ Hc) ; apply hinhuniv ; apply sumofmaps ; [intros Xc | intros x].
- apply hinhpr ; left ; intro H ; apply Xc.
revert H ; apply hinhuniv ; intros x.
apply X_bot with (1 := pr1 (pr2 x)).
apply istrans_leNonnegativeRationals with c.
pattern c at 2 ; rewrite (NQhalf_double c).
now apply plusNonnegativeRationals_le_r.
apply lt_leNonnegativeRationals.
pattern c at 1 ;
rewrite <- (isrunit_zeroNonnegativeRationals c).
apply (pr2 (pr2 x)).
now right.
- generalize (isdecrel_leNonnegativeRationals (pr1 y + c / 2)%NRat (pr1 x)) ; apply sumofmaps ; intro Hxy.
+ assert (HY : ∏ y', (Y y') ⨿ (y' = 0%NRat) → (y' < pr1 y + c / 2)%NRat).
{ intros y' ; apply sumofmaps ; intros Yy'.
apply notge_ltNonnegativeRationals ; intro H ; apply nYy.
now apply Y_bot with (1 := Yy').
rewrite Yy'.
now apply ispositive_plusNonnegativeRationals_r. }
apply hinhpr ; right ; ∃ (pr1 x - (pr1 y + c / 2))%NRat ; split.
× apply hinhpr.
∃ (pr1 x) ; split.
exact (pr1 (pr2 x)).
intros y' Yy'.
pattern (pr1 x) at 2 ;
rewrite <- (minusNonnegativeRationals_plus_r _ _ Hxy).
apply plusNonnegativeRationals_ltcompat_l.
now apply HY.
× unfold neg ; apply (hinhuniv (P := hProppair _ isapropempty)) ; intros x'.
generalize (pr2 (pr2 x') (pr1 y) Yy).
apply_pr2 notlt_geNonnegativeRationals.
apply istrans_leNonnegativeRationals with (pr1 x + c / 2)%NRat.
apply lt_leNonnegativeRationals.
apply notge_ltNonnegativeRationals ; intro H ; apply (pr2 (pr2 x)).
now apply X_bot with (1 := pr1 (pr2 x')).
rewrite isassoc_plusNonnegativeRationals, (iscomm_plusNonnegativeRationals _ (pr1 y)).
pattern c at 3; rewrite (NQhalf_double c).
rewrite <- (isassoc_plusNonnegativeRationals (pr1 y)), <- isassoc_plusNonnegativeRationals.
rewrite minusNonnegativeRationals_plus_r.
apply isrefl_leNonnegativeRationals.
exact Hxy.
+ apply notge_ltNonnegativeRationals in Hxy.
apply hinhpr ; left ; unfold neg ; apply (hinhuniv (P := hProppair _ isapropempty)) ; intros x'.
generalize (pr2 (pr2 x') _ Yy).
apply_pr2 notlt_geNonnegativeRationals.
induction (isdecrel_leNonnegativeRationals (pr1 y) (pr1 x')) as [Hxy' | Hxy'].
rewrite iscomm_plusNonnegativeRationals.
pattern c at 1; rewrite (NQhalf_double c), <- isassoc_plusNonnegativeRationals.
apply istrans_leNonnegativeRationals with (pr1 x + c / 2)%NRat.
apply lt_leNonnegativeRationals ; apply notge_ltNonnegativeRationals ; intro ; apply (pr2 (pr2 x)).
now apply X_bot with (1 := pr1 (pr2 x')).
apply plusNonnegativeRationals_lecompat_r.
now apply lt_leNonnegativeRationals.
apply notge_ltNonnegativeRationals in Hxy'.
apply istrans_leNonnegativeRationals with (pr1 y).
now apply lt_leNonnegativeRationals.
now apply plusNonnegativeRationals_le_l.
- now apply hinhpr ; right.
Qed.
End Dcuts_minus.
Definition Dcuts_minus (X Y : Dcuts) : Dcuts :=
mk_Dcuts (Dcuts_minus_val (pr1 X) (pr1 Y))
(Dcuts_minus_bot (pr1 X) (pr1 Y))
(Dcuts_minus_open (pr1 X) (is_Dcuts_open X) (pr1 Y))
(Dcuts_minus_corr (pr1 X) (is_Dcuts_bot X) (is_Dcuts_corr X)
(pr1 Y) (is_Dcuts_bot Y) (is_Dcuts_corr Y)).
Lemma Dcuts_minus_correct_l:
∏ x y z : Dcuts, x = Dcuts_plus y z → z = Dcuts_minus x y.
Proof.
intros _ Y Z →.
apply Dcuts_eq_is_eq ; intro r ; split.
- intros Zr.
generalize (is_Dcuts_open _ _ Zr) ; apply hinhuniv ; intros q.
generalize (pr1 (ispositive_minusNonnegativeRationals _ _) (pr2 (pr2 q))) ; intros Hq.
generalize (is_Dcuts_corr Y _ Hq) ; apply hinhuniv ; apply sumofmaps ; [intros nYy | ].
+ apply hinhpr ; ∃ (pr1 q) ; split.
× apply hinhpr ; left ; right.
exact (pr1 (pr2 q)).
× intros y ; apply sumofmaps ; [intros Yy | intros ->].
apply minusNonnegativeRationals_ltcompat_l' with r.
rewrite plusNonnegativeRationals_minus_l.
now apply (Dcuts_finite Y).
rewrite isrunit_zeroNonnegativeRationals.
now apply_pr2 ispositive_minusNonnegativeRationals.
+ intros y.
apply hinhpr.
∃ (pr1 y + pr1 q) ; split.
apply hinhpr ; right ; ∃ (pr1 y,,pr1 q) ; simpl ; repeat split.
× exact (pr1 (pr2 y)).
× exact (pr1 (pr2 q)).
× intros y' ; apply sumofmaps ; [intros Yy' | intros ->].
apply minusNonnegativeRationals_ltcompat_l' with r.
rewrite plusNonnegativeRationals_minus_l.
rewrite iscomm_plusNonnegativeRationals, <- minusNonnegativeRationals_plus_exchange, iscomm_plusNonnegativeRationals.
apply (Dcuts_finite Y).
exact (pr2 (pr2 y)).
exact Yy'.
now apply lt_leNonnegativeRationals ; apply_pr2 ispositive_minusNonnegativeRationals.
rewrite isrunit_zeroNonnegativeRationals.
apply istrans_lt_le_ltNonnegativeRationals with (pr1 q).
now apply_pr2 ispositive_minusNonnegativeRationals.
now apply plusNonnegativeRationals_le_l.
- apply hinhuniv ; intros q.
generalize (pr1 (pr2 q)) ; apply hinhuniv ; apply sumofmaps ; [ apply sumofmaps ; [intros Yq | intros Zq ] | intros yz ].
+ apply fromempty, (isnonnegative_NonnegativeRationals' r).
apply_pr2 (plusNonnegativeRationals_ltcompat_r (pr1 q)).
rewrite islunit_zeroNonnegativeRationals.
apply (pr2 (pr2 q)).
now left.
+ apply is_Dcuts_bot with (1 := Zq), lt_leNonnegativeRationals.
pattern r at 1 ;
rewrite <- (isrunit_zeroNonnegativeRationals r).
apply (pr2 (pr2 q)).
now right.
+ apply is_Dcuts_bot with (1 := pr2 (pr2 (pr2 yz))), lt_leNonnegativeRationals.
apply_pr2 (plusNonnegativeRationals_ltcompat_l (pr1 (pr1 yz))).
rewrite <- (pr1 (pr2 yz)), iscomm_plusNonnegativeRationals.
apply (pr2 (pr2 q)).
left.
exact (pr1 (pr2 (pr2 yz))).
Qed.
Lemma Dcuts_minus_correct_r:
∏ x y z : Dcuts, x = Dcuts_plus y z → y = Dcuts_minus x z.
Proof.
intros x y z Hx.
apply Dcuts_minus_correct_l.
rewrite Hx.
now apply iscomm_Dcuts_plus.
Qed.
Lemma Dcuts_minus_eq_zero:
∏ x y : Dcuts, x ≤ y → Dcuts_minus x y = 0.
Proof.
intros X Y Hxy.
apply Dcuts_eq_is_eq ; intros r ; split.
- apply hinhuniv ; intros x.
apply_pr2 (plusNonnegativeRationals_ltcompat_r (pr1 x)).
rewrite islunit_zeroNonnegativeRationals.
apply (pr2 (pr2 x)).
left ; simple refine (Hxy _ _).
exact (pr1 (pr2 x)).
- intro H.
now apply fromempty ; apply (Dcuts_zero_empty r).
Qed.
Lemma Dcuts_minus_plus_r:
∏ x y z : Dcuts, z ≤ y → x = Dcuts_minus y z → y = Dcuts_plus x z.
Proof.
intros _ Y Z Hyz →.
apply Dcuts_eq_is_eq ; intro r ; split.
- intros Yr.
generalize (is_Dcuts_open _ _ Yr) ; apply hinhuniv ; intros q.
generalize (pr1 (ispositive_minusNonnegativeRationals _ _) (pr2 (pr2 q))) ; intros Hq.
generalize (is_Dcuts_corr Z _ Hq).
apply hinhuniv ; apply sumofmaps ; [intros nZ | ].
+ apply hinhpr ; left ; left.
apply hinhpr.
∃ (pr1 q) ; split.
exact (pr1 (pr2 q)).
intros z ; apply sumofmaps ; [intros Zz | intros ->].
× apply (minusNonnegativeRationals_ltcompat_l' _ _ r).
rewrite plusNonnegativeRationals_minus_l.
now apply (Dcuts_finite Z).
× now rewrite isrunit_zeroNonnegativeRationals ;
apply_pr2 ispositive_minusNonnegativeRationals.
+ intros z.
induction (isdecrel_leNonnegativeRationals r (pr1 z)) as [Hzr | Hzr].
× apply hinhpr ; left ; right.
now apply (is_Dcuts_bot _ _ (pr1 (pr2 z))).
× apply notge_ltNonnegativeRationals in Hzr ; apply lt_leNonnegativeRationals in Hzr.
apply hinhpr ; right.
∃ (r - pr1 z ,, pr1 z) ; repeat split.
simpl.
now rewrite minusNonnegativeRationals_plus_r.
apply hinhpr ; simpl.
∃ (pr1 q) ; split.
exact (pr1 (pr2 q)).
intros z' ; apply sumofmaps ; [intros Zz' | intros ->].
apply_pr2 (plusNonnegativeRationals_ltcompat_r (pr1 z)).
rewrite isassoc_plusNonnegativeRationals, (iscomm_plusNonnegativeRationals z'), <- isassoc_plusNonnegativeRationals.
rewrite minusNonnegativeRationals_plus_r.
apply (minusNonnegativeRationals_ltcompat_l' _ _ r) ; rewrite plusNonnegativeRationals_minus_l.
rewrite <- minusNonnegativeRationals_plus_exchange, iscomm_plusNonnegativeRationals.
apply (Dcuts_finite Z).
exact (pr2 (pr2 z)).
exact Zz'.
now apply lt_leNonnegativeRationals ; apply_pr2 ispositive_minusNonnegativeRationals.
now apply Hzr.
rewrite isrunit_zeroNonnegativeRationals.
apply istrans_le_lt_ltNonnegativeRationals with r.
now apply minusNonnegativeRationals_le.
now apply_pr2 ispositive_minusNonnegativeRationals.
exact (pr1 (pr2 z)).
- apply hinhuniv ; apply sumofmaps ; [apply sumofmaps ; [ | intros Zr] | intros ryzz ; rewrite (pr1 (pr2 ryzz)) ].
+ apply hinhuniv ; intros y.
apply (is_Dcuts_bot _ _ (pr1 (pr2 y))).
apply lt_leNonnegativeRationals.
pattern r at 1 ;
rewrite <- (isrunit_zeroNonnegativeRationals r).
apply (pr2 (pr2 y)).
now right.
+ now simple refine (Hyz _ _).
+ generalize (pr1 (pr2 (pr2 ryzz))) ; apply hinhuniv ; simpl ; intros y.
apply (is_Dcuts_bot _ _ (pr1 (pr2 y))).
apply lt_leNonnegativeRationals, (pr2 (pr2 y)).
left.
exact (pr2 (pr2 (pr2 ryzz))).
Qed.
Lemma Dcuts_minus_le :
∏ x y, Dcuts_minus x y ≤ x.
Proof.
intros X Y r.
apply hinhuniv ; intros x.
apply is_Dcuts_bot with (1 := pr1 (pr2 x)).
apply lt_leNonnegativeRationals.
pattern r at 1 ;
rewrite <- (isrunit_zeroNonnegativeRationals r).
apply (pr2 (pr2 x)).
now right.
Qed.
Lemma ispositive_Dcuts_minus :
∏ x y : Dcuts, (y < x) ↔ (0 < Dcuts_minus x y).
Proof.
intros X Y.
split.
- apply hinhuniv ; intros x.
generalize (is_Dcuts_open _ _ (pr2 (pr2 x))) ; apply hinhfun ; intros x'.
∃ 0%NRat ; split.
+ now apply (isnonnegative_NonnegativeRationals' 0%NRat).
+ apply hinhpr.
∃ (pr1 x') ; split.
exact (pr1 (pr2 x')).
intros y ; apply sumofmaps ; [intros Yy | intros ->].
× rewrite islunit_zeroNonnegativeRationals.
apply istrans_ltNonnegativeRationals with (pr1 x).
apply (Dcuts_finite Y).
exact (pr1 (pr2 x)).
exact Yy.
exact (pr2 (pr2 x')).
× rewrite islunit_zeroNonnegativeRationals.
apply istrans_le_lt_ltNonnegativeRationals with (pr1 x).
now apply isnonnegative_NonnegativeRationals.
exact (pr2 (pr2 x')).
- apply hinhuniv ; intros r ; generalize (pr2 (pr2 r)).
apply hinhfun ; intros x.
∃ (pr1 x) ; split.
+ intros Yx ; apply (isnonnegative_NonnegativeRationals' (pr1 r)).
apply_pr2 (plusNonnegativeRationals_ltcompat_r (pr1 x)).
rewrite islunit_zeroNonnegativeRationals.
now apply (pr2 (pr2 x)) ; left.
+ exact (pr1 (pr2 x)).
Qed.
Section Dcuts_max.
Context (X : hsubtype NonnegativeRationals).
Context (X_bot : Dcuts_def_bot X).
Context (X_open : Dcuts_def_open X).
Context (X_finite : Dcuts_def_finite X).
Context (X_corr : Dcuts_def_corr X).
Context (Y : hsubtype NonnegativeRationals).
Context (Y_bot : Dcuts_def_bot Y).
Context (Y_open : Dcuts_def_open Y).
Context (Y_finite : Dcuts_def_finite Y).
Context (Y_corr : Dcuts_def_corr Y).
Definition Dcuts_max_val : hsubtype NonnegativeRationals :=
λ r : NonnegativeRationals, X r ∨ Y r.
Lemma Dcuts_max_bot : Dcuts_def_bot Dcuts_max_val.
Proof.
intros r Hr q Hqr.
revert Hr ; apply hinhfun ; apply sumofmaps ; [ intros Xr| intros Yr].
- left ; now apply X_bot with (1 := Xr).
- right ; now apply Y_bot with (1 := Yr).
Qed.
Lemma Dcuts_max_open : Dcuts_def_open Dcuts_max_val.
Proof.
intros r ; apply hinhuniv ; apply sumofmaps ; [ intros Xr | intros Yr].
- generalize (X_open _ Xr).
apply hinhfun ; intros q.
∃ (pr1 q) ; split.
apply hinhpr ; left.
exact (pr1 (pr2 q)).
exact (pr2 (pr2 q)).
- generalize (Y_open _ Yr).
apply hinhfun ; intros q.
∃ (pr1 q) ; split.
apply hinhpr ; right.
exact (pr1 (pr2 q)).
exact (pr2 (pr2 q)).
Qed.
Lemma Dcuts_max_corr : Dcuts_def_corr Dcuts_max_val.
Proof.
intros c Hc.
generalize (X_corr _ Hc) (Y_corr _ Hc) ; apply hinhfun2 ; apply (sumofmaps (Z := _ → _)) ;
[intros nXc | intros x] ; apply sumofmaps ; [intros nYc | intros y |intros nYc | intros y].
- left ; unfold neg ; apply (hinhuniv (P := hProppair _ isapropempty)) ; apply sumofmaps ;
[intros Xc | intros Yc].
+ now apply nXc.
+ now apply nYc.
- right.
∃ (pr1 y) ; split.
+ apply hinhpr ; right.
exact (pr1 (pr2 y)).
+ unfold neg ; apply (hinhuniv (P := hProppair _ isapropempty)) ; apply sumofmaps ;
[intros Xy | intros Yy].
× now apply nXc, X_bot with (1 := Xy), plusNonnegativeRationals_le_l.
× now apply (pr2 (pr2 y)).
- right.
∃ (pr1 x) ; split.
+ apply hinhpr ; left.
exact (pr1 (pr2 x)).
+ unfold neg ; apply (hinhuniv (P := hProppair _ isapropempty)) ; apply sumofmaps ; [intros Xx | intros Yx].
× now apply (pr2 (pr2 x)).
× now apply nYc, Y_bot with (1 := Yx), plusNonnegativeRationals_le_l.
- right.
∃ (NQmax (pr1 x) (pr1 y)) ; split.
+ apply NQmax_case.
× apply hinhpr ; left.
exact (pr1 (pr2 x)).
× apply hinhpr ; right.
exact (pr1 (pr2 y)).
+ unfold neg ; apply (hinhuniv (P := hProppair _ isapropempty)) ; apply sumofmaps ; [ intros Xxy | intros Yxy].
× apply (pr2 (pr2 x)), X_bot with (1 := Xxy).
apply plusNonnegativeRationals_lecompat_r.
now apply NQmax_le_l.
× apply (pr2 (pr2 y)), Y_bot with (1 := Yxy).
apply plusNonnegativeRationals_lecompat_r.
now apply NQmax_le_r.
Qed.
End Dcuts_max.
Definition Dcuts_max (X Y : Dcuts) : Dcuts :=
mk_Dcuts (Dcuts_max_val (pr1 X) (pr1 Y))
(Dcuts_max_bot (pr1 X) (is_Dcuts_bot X)
(pr1 Y) (is_Dcuts_bot Y))
(Dcuts_max_open (pr1 X) (is_Dcuts_open X)
(pr1 Y) (is_Dcuts_open Y))
(Dcuts_max_corr (pr1 X) (is_Dcuts_bot X) (is_Dcuts_corr X)
(pr1 Y) (is_Dcuts_bot Y) (is_Dcuts_corr Y)).
Lemma iscomm_Dcuts_max :
∏ x y : Dcuts, Dcuts_max x y = Dcuts_max y x.
Proof.
intros x y.
apply Dcuts_eq_is_eq ; intros r.
split ; apply islogeqcommhdisj.
Qed.
Lemma isassoc_Dcuts_max :
∏ x y z : Dcuts, Dcuts_max (Dcuts_max x y) z = Dcuts_max x (Dcuts_max y z).
Proof.
intros x y z.
apply Dcuts_eq_is_eq ; intros r.
split.
- apply hinhuniv ; apply sumofmaps ; [ | intros Zr].
+ apply hinhfun ; apply sumofmaps ; [ intros Xr | intros Yr].
× now left.
× right ; apply hinhpr.
now left.
+ apply hinhpr.
right ; apply hinhpr.
now right.
- apply hinhuniv ; apply sumofmaps ; [intros Xr | ].
+ apply hinhpr.
left ; apply hinhpr.
now left.
+ apply hinhfun ; apply sumofmaps ; [intros Yr | intros Zr].
× left ; apply hinhpr.
now right.
× now right.
Qed.
Lemma Dcuts_max_le_l :
∏ x y : Dcuts, x ≤ Dcuts_max x y.
Proof.
intros x y r Xr.
apply hinhpr.
now left.
Qed.
Lemma Dcuts_max_le_r :
∏ x y : Dcuts, y ≤ Dcuts_max x y.
Proof.
intros x y r Xr.
apply hinhpr.
now right.
Qed.
Lemma Dcuts_max_carac_l :
∏ x y : Dcuts, y ≤ x → Dcuts_max x y = x.
Proof.
intros x y Hxy.
apply Dcuts_eq_is_eq ; intros r ; split.
apply hinhuniv ; apply sumofmaps ; [ intros Xr | intros Yr ].
- exact Xr.
- now refine (Hxy _ _).
- intros Xr.
now apply hinhpr ; left.
Qed.
Lemma Dcuts_max_carac_r :
∏ x y : Dcuts, x ≤ y → Dcuts_max x y = y.
Proof.
intros x y Hxy.
rewrite iscomm_Dcuts_max.
now apply Dcuts_max_carac_l.
Qed.
Lemma Dcuts_minus_plus_max :
∏ x y : Dcuts, Dcuts_plus (Dcuts_minus x y) y = Dcuts_max x y.
Proof.
intros X Y.
apply Dcuts_eq_is_eq ; intros r ; split.
- apply hinhuniv ; apply sumofmaps ; [ apply sumofmaps ; [intros XYr | intros Yr] | intros xyy ; rewrite (pr1 (pr2 xyy))].
+ apply hinhpr ; left.
revert XYr ; now refine (Dcuts_minus_le _ _ _).
+ now apply hinhpr ; right.
+ generalize (pr1 (pr2 (pr2 xyy))) ; apply hinhfun ; intros x.
left ; apply is_Dcuts_bot with (1 := pr1 (pr2 x)).
apply lt_leNonnegativeRationals.
apply (pr2 (pr2 x)).
left.
exact (pr2 (pr2 (pr2 xyy))).
- apply hinhuniv ; apply sumofmaps ; [intros Xr|intros Yr].
+ generalize (is_Dcuts_open _ _ Xr) ; apply hinhuniv ; intros x.
generalize (pr1 (ispositive_minusNonnegativeRationals _ _) (pr2 (pr2 x))) ; intros Hx.
generalize (is_Dcuts_corr Y _ Hx) ; apply hinhuniv ;
apply sumofmaps ; [ intros nYx | intros Hyx ] ; apply_pr2_in ispositive_minusNonnegativeRationals Hx.
× rewrite <- (Dcuts_minus_plus_r (Dcuts_minus X Y) X Y).
exact Xr.
apply Dcuts_lt_le_rel.
apply hinhpr ; ∃ (pr1 x - r) ; split.
exact nYx.
apply is_Dcuts_bot with (1 := pr1 (pr2 x)).
now apply minusNonnegativeRationals_le.
reflexivity.
× rename Hyx into y.
generalize (pr2 (pr2 y)) ; intros nYy.
rewrite iscomm_plusNonnegativeRationals, minusNonnegativeRationals_plus_exchange in nYy.
2: now apply lt_leNonnegativeRationals.
generalize (isdecrel_leNonnegativeRationals r (pr1 y)) ; apply sumofmaps ; intros Hle.
{ apply hinhpr ; left ; right.
now apply is_Dcuts_bot with (1 := pr1 (pr2 y)). }
apply notge_ltNonnegativeRationals in Hle.
rewrite <- (Dcuts_minus_plus_r (Dcuts_minus X Y) X Y).
exact Xr.
apply Dcuts_lt_le_rel.
apply hinhpr ; ∃ ((pr1 x + pr1 y) - r) ; split.
exact nYy.
apply is_Dcuts_bot with (1 := pr1 (pr2 x)).
pattern (pr1 x) at 2;
rewrite <- (plusNonnegativeRationals_minus_r r (pr1 x)).
apply minusNonnegativeRationals_lecompat_l.
apply plusNonnegativeRationals_lecompat_l.
now apply lt_leNonnegativeRationals.
reflexivity.
+ now apply hinhpr ; left ; right.
Qed.
Lemma Dcuts_max_le :
∏ x y z, x ≤ z → y ≤ z → Dcuts_max x y ≤ z.
Proof.
intros x y z Hx Hy r.
apply hinhuniv ; apply sumofmaps ; [intros Xr|intros Yr].
now refine (Hx _ _).
now refine (Hy _ _).
Qed.
Lemma Dcuts_max_lt :
∏ x y z : Dcuts, x < z → y < z → Dcuts_max x y < z.
Proof.
intros x y z.
apply hinhfun2 ; intros rx ry.
∃ (NQmax (pr1 rx) (pr1 ry)) ; split.
- apply NQmax_case_strong ; intro Hr.
+ intro Hr' ; apply (pr1 (pr2 ry)).
revert Hr' ; apply hinhuniv ; apply sumofmaps ; [ intros Xr | intros Yr].
now apply fromempty, (pr1 (pr2 rx)).
now apply is_Dcuts_bot with (1 := Yr).
+ intro Hr' ; apply (pr1 (pr2 rx)).
revert Hr' ; apply hinhuniv ; apply sumofmaps ; [intros Xr | intros Yr].
now apply is_Dcuts_bot with (1 := Xr).
now apply fromempty, (pr1 (pr2 ry)).
- apply NQmax_case.
exact (pr2 (pr2 rx)).
exact (pr2 (pr2 ry)).
Qed.
Lemma isldistr_Dcuts_max_mult :
isldistr Dcuts_max Dcuts_mult.
Proof.
intros x y z.
apply Dcuts_eq_is_eq.
intros r ; split.
- apply hinhuniv.
intros zxy.
rewrite (pr1 (pr2 zxy)).
generalize (pr2 (pr2 (pr2 zxy))).
apply hinhfun.
apply sumofmaps ; [intros Xr | intros Yr].
+ left.
apply hinhpr.
∃ (pr1 zxy).
repeat split.
exact (pr1 (pr2 (pr2 zxy))).
exact Xr.
+ right.
apply hinhpr.
∃ (pr1 zxy).
repeat split.
exact (pr1 (pr2 (pr2 zxy))).
exact Yr.
- apply hinhuniv.
apply sumofmaps.
+ apply hinhfun.
intros zx.
rewrite (pr1 (pr2 zx)).
∃ (pr1 zx).
repeat split.
exact (pr1 (pr2 (pr2 zx))).
apply hinhpr.
left.
exact (pr2 (pr2 (pr2 zx))).
+ apply hinhfun.
intros zy.
rewrite (pr1 (pr2 zy)).
∃ (pr1 zy).
repeat split.
exact (pr1 (pr2 (pr2 zy))).
apply hinhpr.
right.
exact (pr2 (pr2 (pr2 zy))).
Qed.
Lemma isrdistr_Dcuts_max_mult :
isrdistr Dcuts_max Dcuts_mult.
Proof.
intros x y z.
rewrite !(iscomm_Dcuts_mult _ z).
now apply isldistr_Dcuts_max_mult.
Qed.
Lemma isldistr_Dcuts_max_plus :
isldistr Dcuts_max Dcuts_plus.
Proof.
intros x y z.
apply Dcuts_eq_is_eq.
intros r ; split.
- apply hinhuniv ; apply sumofmaps ; [ apply sumofmaps ; [intros Zr | ]
| intros zxy ; rewrite (pr1 (pr2 zxy)) ; generalize (pr2 (pr2 (pr2 zxy))) ].
+ apply hinhpr.
left.
apply hinhpr.
left.
now left.
+ apply hinhfun.
apply sumofmaps ; [intros Xr | intros Yr].
× left.
apply hinhpr.
left.
now right.
× right.
apply hinhpr.
left.
now right.
+ apply hinhfun.
apply sumofmaps ; [intros Xr | intros Yr].
× left.
apply hinhpr.
right.
∃ (pr1 zxy).
repeat split.
exact (pr1 (pr2 (pr2 zxy))).
exact Xr.
× right.
apply hinhpr.
right.
∃ (pr1 zxy).
repeat split.
exact (pr1 (pr2 (pr2 zxy))).
exact Yr.
- apply hinhuniv ; apply sumofmaps ; apply hinhuniv ; apply sumofmaps.
+ apply sumofmaps ; [ intros Zr | intros Xr] ; apply hinhpr ; left.
× now left.
× right.
apply hinhpr.
now left.
+ intros zx ; rewrite (pr1 (pr2 zx)).
apply hinhpr.
right.
∃ (pr1 zx).
repeat split.
exact (pr1 (pr2 (pr2 zx))).
apply hinhpr.
left.
exact (pr2 (pr2 (pr2 zx))).
+ apply sumofmaps ; [intros Zr | intros Yr] ; apply hinhpr ; left.
× now left.
× right.
apply hinhpr.
now right.
+ intros zx ; rewrite (pr1 (pr2 zx)).
apply hinhpr.
right.
∃ (pr1 zx).
repeat split.
exact (pr1 (pr2 (pr2 zx))).
apply hinhpr.
right.
exact (pr2 (pr2 (pr2 zx))).
Qed.
Lemma Dcuts_max_plus :
∏ x y : Dcuts,
(0 < x → y = 0) →
Dcuts_max x y = Dcuts_plus x y.
Proof.
intros x y H.
apply Dcuts_le_ge_eq.
- intros r.
apply hinhfun.
intros H0.
left.
exact H0.
- intros r.
apply hinhfun.
apply sumofmaps ; [intros H0 | ].
exact H0.
intros xy ; rewrite (pr1 (pr2 xy)).
apply fromempty.
refine (Dcuts_zero_empty _ _).
rewrite <- H.
apply (pr2 (pr2 (pr2 xy))).
apply hinhpr.
∃ (pr1 (pr1 xy)).
split.
apply Dcuts_zero_empty.
exact (pr1 (pr2 (pr2 xy))).
Qed.
Section Dcuts_min.
Context (X : hsubtype NonnegativeRationals).
Context (X_bot : Dcuts_def_bot X).
Context (X_open : Dcuts_def_open X).
Context (X_finite : Dcuts_def_finite X).
Context (X_corr : Dcuts_def_corr X).
Context (Y : hsubtype NonnegativeRationals).
Context (Y_bot : Dcuts_def_bot Y).
Context (Y_open : Dcuts_def_open Y).
Context (Y_finite : Dcuts_def_finite Y).
Context (Y_corr : Dcuts_def_corr Y).
Definition Dcuts_min_val : hsubtype NonnegativeRationals :=
λ r : NonnegativeRationals, X r ∧ Y r.
Lemma Dcuts_min_bot : Dcuts_def_bot Dcuts_min_val.
Proof.
intros r Hr q Hqr.
split.
- apply X_bot with (1 := pr1 Hr), Hqr.
- apply Y_bot with (1 := pr2 Hr), Hqr.
Qed.
Lemma Dcuts_min_open : Dcuts_def_open Dcuts_min_val.
Proof.
intros r Hr.
generalize (X_open _ (pr1 Hr)) (Y_open _ (pr2 Hr)).
apply hinhfun2 ; intros q q'.
generalize (isdecrel_ltNonnegativeRationals (pr1 q) (pr1 q')) ;
apply sumofmaps ; intros H.
- ∃ (pr1 q) ; repeat split.
exact (pr1 (pr2 q)).
apply Y_bot with (1 := pr1 (pr2 q')), lt_leNonnegativeRationals, H.
exact (pr2 (pr2 q)).
- ∃ (pr1 q') ; repeat split.
apply X_bot with (1 := pr1 (pr2 q)), notlt_geNonnegativeRationals, H.
exact (pr1 (pr2 q')).
exact (pr2 (pr2 q')).
Qed.
Lemma Dcuts_min_corr : Dcuts_def_corr Dcuts_min_val.
Proof.
intros c Hc0.
generalize (X_corr _ Hc0) (Y_corr _ Hc0) ; apply hinhfun2 ; apply (sumofmaps (Z := _ → _)) ; [intros nXc | intros q] ; intros Hy.
- left ; intros Hc.
apply nXc.
exact (pr1 Hc).
- revert Hy ; apply sumofmaps ;
[intros nYc | intros q'].
+ left ; intros Hc.
apply nYc.
exact (pr2 Hc).
+ right.
generalize (isdecrel_ltNonnegativeRationals (pr1 q) (pr1 q')) ;
apply sumofmaps ; intros H.
× ∃ (pr1 q) ; repeat split.
exact (pr1 (pr2 q)).
apply Y_bot with (1 := pr1 (pr2 q')), lt_leNonnegativeRationals, H.
intros Hc.
apply (pr2 (pr2 q)).
exact (pr1 Hc).
× ∃ (pr1 q') ; repeat split.
apply X_bot with (1 := pr1 (pr2 q)), notlt_geNonnegativeRationals, H.
exact (pr1 (pr2 q')).
intros Hc.
apply (pr2 (pr2 q')).
exact (pr2 Hc).
Qed.
End Dcuts_min.
Definition Dcuts_min (X Y : Dcuts) : Dcuts :=
mk_Dcuts (Dcuts_min_val (pr1 X) (pr1 Y))
(Dcuts_min_bot (pr1 X) (is_Dcuts_bot X)
(pr1 Y) (is_Dcuts_bot Y))
(Dcuts_min_open (pr1 X) (is_Dcuts_bot X) (is_Dcuts_open X)
(pr1 Y) (is_Dcuts_bot Y) (is_Dcuts_open Y))
(Dcuts_min_corr (pr1 X) (is_Dcuts_bot X) (is_Dcuts_corr X)
(pr1 Y) (is_Dcuts_bot Y) (is_Dcuts_corr Y)).
Lemma iscomm_Dcuts_min :
∏ x y : Dcuts, Dcuts_min x y = Dcuts_min y x.
Proof.
intros x y.
apply Dcuts_eq_is_eq ; intros r.
split ; apply weqdirprodcomm.
Qed.
Lemma isassoc_Dcuts_min :
∏ x y z : Dcuts, Dcuts_min (Dcuts_min x y) z = Dcuts_min x (Dcuts_min y z).
Proof.
intros x y z.
apply Dcuts_eq_is_eq ; intros r.
split ; intros Hr ; repeat split.
- apply (pr1 (pr1 Hr)).
- apply (pr2 (pr1 Hr)).
- apply (pr2 Hr).
- apply (pr1 Hr).
- apply (pr1 (pr2 Hr)).
- apply (pr2 (pr2 Hr)).
Qed.
Lemma Dcuts_min_le_l :
∏ x y : Dcuts, Dcuts_min x y ≤ x.
Proof.
intros x y r Hr.
exact (pr1 Hr).
Qed.
Lemma Dcuts_min_le_r :
∏ x y : Dcuts, Dcuts_min x y ≤ y.
Proof.
intros x y r Hr.
exact (pr2 Hr).
Qed.
Lemma Dcuts_min_carac_r :
∏ x y : Dcuts, y ≤ x → Dcuts_min x y = y.
Proof.
intros x y Hxy.
apply Dcuts_eq_is_eq ; intros r ; split.
- intros Hr.
exact (pr2 Hr).
- intros Yr.
split.
now simple refine (Hxy _ _).
exact Yr.
Qed.
Lemma Dcuts_min_carac_l :
∏ x y : Dcuts, x ≤ y → Dcuts_min x y = x.
Proof.
intros x y Hxy.
rewrite iscomm_Dcuts_min.
now apply Dcuts_min_carac_r.
Qed.
Lemma Dcuts_min_max :
∏ x y : Dcuts,
Dcuts_min x (Dcuts_max x y) = x.
Proof.
intros x y.
apply Dcuts_eq_is_eq ; intros r.
split.
- intros Hr.
exact (pr1 Hr).
- intros Xr.
split.
exact Xr.
apply hinhpr.
now left.
Qed.
Lemma Dcuts_max_min :
∏ x y : Dcuts,
Dcuts_max x (Dcuts_min x y) = x.
Proof.
intros x y.
apply Dcuts_eq_is_eq ; intros r.
split.
- apply hinhuniv ; apply sumofmaps ; [intros Xr | intros Hr].
exact Xr.
exact (pr1 Hr).
- intros Xr.
apply hinhpr.
now left.
Qed.
Lemma Dcuts_min_gt :
∏ x y z : Dcuts,
z < x → z < y → z < (Dcuts_min x y).
Proof.
intros x y z.
apply hinhfun2.
intros r q.
generalize (isdecrel_ltNonnegativeRationals (pr1 r) (pr1 q)) ; apply sumofmaps ; intros H.
- ∃ (pr1 r).
repeat split.
+ exact (pr1 (pr2 r)).
+ exact (pr2 (pr2 r)).
+ apply is_Dcuts_bot with (1 := pr2 (pr2 q)), lt_leNonnegativeRationals, H.
- ∃ (pr1 q).
repeat split.
+ exact (pr1 (pr2 q)).
+ apply is_Dcuts_bot with (1 := pr2 (pr2 r)), notlt_geNonnegativeRationals, H.
+ exact (pr2 (pr2 q)).
Qed.
Lemma Dcuts_two_ap_zero : Dcuts_two ≠ 0.
Proof.
apply isapfun_NonnegativeRationals_to_Dcuts'.
apply gtNonnegativeRationals_noteq.
exact ispositive_twoNonnegativeRationals.
Qed.
Section Dcuts_half.
Context (X : hsubtype NonnegativeRationals)
(X_bot : Dcuts_def_bot X)
(X_open : Dcuts_def_open X)
(X_corr : Dcuts_def_corr X).
Definition Dcuts_half_val : hsubtype NonnegativeRationals :=
λ r, X (r + r).
Lemma Dcuts_half_bot : Dcuts_def_bot Dcuts_half_val.
Proof.
intros r Hr q Hq.
apply X_bot with (1 := Hr).
eapply istrans_leNonnegativeRationals, plusNonnegativeRationals_lecompat_l, Hq.
now apply plusNonnegativeRationals_lecompat_r, Hq.
Qed.
Lemma Dcuts_half_open : Dcuts_def_open Dcuts_half_val.
Proof.
intros r Hr.
generalize (X_open _ Hr).
apply hinhfun ; intros q.
∃ (pr1 q / 2)%NRat ; split.
- unfold Dcuts_half_val.
rewrite <- NQhalf_double.
exact (pr1 (pr2 q)).
- apply_pr2 (multNonnegativeRationals_ltcompat_l 2%NRat).
exact ispositive_twoNonnegativeRationals.
pattern r at 1 ; rewrite (NQhalf_double r), isldistr_mult_plusNonnegativeRationals, !multdivNonnegativeRationals.
exact (pr2 (pr2 q)).
exact ispositive_twoNonnegativeRationals.
exact ispositive_twoNonnegativeRationals.
Qed.
Lemma Dcuts_half_corr : Dcuts_def_corr Dcuts_half_val.
Proof.
intros c Hc.
assert (Hc0 : (0 < c + c)%NRat)
by (now apply ispositive_plusNonnegativeRationals_l).
generalize (X_corr _ Hc0) ; apply hinhfun ; apply sumofmaps ; [intros Hx | intros r].
- left ; exact Hx.
- right.
∃ (pr1 r / 2)%NRat ; split.
+ unfold Dcuts_half_val.
rewrite <- NQhalf_double.
exact (pr1 (pr2 r)).
+ intro H ; apply (pr2 (pr2 r)).
apply X_bot with (1 := H).
pattern (pr1 r) at 1 ;
rewrite (NQhalf_double (pr1 r)), !isassoc_plusNonnegativeRationals.
apply plusNonnegativeRationals_lecompat_l.
rewrite iscomm_plusNonnegativeRationals, !isassoc_plusNonnegativeRationals.
apply plusNonnegativeRationals_lecompat_l.
rewrite iscomm_plusNonnegativeRationals.
now apply isrefl_leNonnegativeRationals.
Qed.
End Dcuts_half.
Definition Dcuts_half (x : Dcuts) : Dcuts :=
mk_Dcuts (Dcuts_half_val (pr1 x))
(Dcuts_half_bot (pr1 x) (is_Dcuts_bot x))
(Dcuts_half_open (pr1 x) (is_Dcuts_open x))
(Dcuts_half_corr (pr1 x) (is_Dcuts_bot x) (is_Dcuts_corr x)).
Lemma Dcuts_half_le :
∏ x : Dcuts, Dcuts_half x ≤ x.
Proof.
intros x.
intros r Hr.
apply is_Dcuts_bot with (1 := Hr).
now apply plusNonnegativeRationals_le_l.
Qed.
Lemma isdistr_Dcuts_half_plus :
∏ x y : Dcuts, Dcuts_half (Dcuts_plus x y) = Dcuts_plus (Dcuts_half x) (Dcuts_half y).
Proof.
intros x y.
apply Dcuts_eq_is_eq.
intros r ; split.
- apply hinhfun ; apply sumofmaps ; [apply sumofmaps ; [intros Xr | intros Yr] | intros xy ].
+ left.
left.
exact Xr.
+ left.
right.
exact Yr.
+ right.
∃ (pr1 (pr1 xy) / 2%NRat,, pr2 (pr1 xy)/2%NRat).
unfold Dcuts_half_val ; simpl ; repeat split.
× unfold divNonnegativeRationals.
rewrite <- isrdistr_mult_plusNonnegativeRationals.
pattern r at 1 ;
rewrite (NQhalf_double r) ; unfold divNonnegativeRationals ; rewrite <- isrdistr_mult_plusNonnegativeRationals.
apply (maponpaths (λ x, x × _)), (pr1 (pr2 xy)).
× unfold Dcuts_half_val ;
rewrite <- NQhalf_double.
exact (pr1 (pr2 (pr2 xy))).
× unfold Dcuts_half_val ;
rewrite <- NQhalf_double.
exact (pr2 (pr2 (pr2 xy))).
- apply hinhfun ; apply sumofmaps ; [apply sumofmaps ; [intros Xr | intros Yr] | intros xy ; rewrite (pr1 (pr2 xy))].
+ left.
left.
exact Xr.
+ left.
right.
exact Yr.
+ right.
∃ (pr1 (pr1 xy) + pr1 (pr1 xy),, pr2 (pr1 xy) + pr2 (pr1 xy)).
simpl ; repeat split.
× rewrite !isassoc_plusNonnegativeRationals.
apply maponpaths.
rewrite iscomm_plusNonnegativeRationals, isassoc_plusNonnegativeRationals.
reflexivity.
× exact (pr1 (pr2 (pr2 xy))).
× exact (pr2 (pr2 (pr2 xy))).
Qed.
Lemma Dcuts_half_double :
∏ x : Dcuts, x = Dcuts_plus (Dcuts_half x) (Dcuts_half x).
Proof.
intros x.
rewrite <- isdistr_Dcuts_half_plus.
apply Dcuts_eq_is_eq ; split.
- intros Hr.
apply hinhpr ; right ; ∃ (r,,r).
now repeat split.
- apply hinhuniv ; apply sumofmaps ; [ apply sumofmaps | intros xy ].
+ now simple refine (Dcuts_half_le _ _).
+ now simple refine (Dcuts_half_le _ _).
+ generalize (isdecrel_ltNonnegativeRationals r (pr1 (pr1 xy))) ; apply sumofmaps ; intro Hrx.
apply is_Dcuts_bot with (1 := pr1 (pr2 (pr2 xy))).
now apply lt_leNonnegativeRationals.
apply is_Dcuts_bot with (1 := pr2 (pr2 (pr2 xy))).
apply_pr2 (plusNonnegativeRationals_lecompat_l r).
pattern (r+r) at 1 ;
rewrite (pr1 (pr2 xy)).
apply plusNonnegativeRationals_lecompat_r.
now apply notlt_geNonnegativeRationals.
Qed.
Lemma Dcuts_half_correct :
∏ x, Dcuts_half x = Dcuts_mult x (Dcuts_inv Dcuts_two Dcuts_two_ap_zero).
Proof.
intros x.
pattern x at 2 ; rewrite (Dcuts_half_double x).
rewrite Dcuts_plus_double, iscomm_Dcuts_mult, <- isassoc_Dcuts_mult, islinv_Dcuts_inv, islunit_Dcuts_mult_one.
reflexivity.
Qed.
Lemma ispositive_Dcuts_half:
∏ x : Dcuts, (0 < x) ↔ (0 < Dcuts_half x).
Proof.
intros.
rewrite Dcuts_half_correct.
pattern 0 at 2 ; rewrite <- (islabsorb_Dcuts_mult_zero (Dcuts_inv Dcuts_two Dcuts_two_ap_zero)).
split.
- intro Hx0.
apply Dcuts_mult_ltcompat_l.
apply Dcuts_mult_ltcompat_l' with Dcuts_two.
rewrite islabsorb_Dcuts_mult_zero, islinv_Dcuts_inv.
unfold Dcuts_zero, Dcuts_one.
apply (pr2 (isapfun_NonnegativeRationals_to_Dcuts_aux 0%NRat 1%NRat)).
now apply ispositive_oneNonnegativeRationals.
exact Hx0.
- now apply Dcuts_mult_ltcompat_l'.
Qed.
Lemma Dcuts_locatedness :
∏ X : Dcuts, ∏ p q : NonnegativeRationals, (p < q)%NRat → p ∈ X ∨ ¬ (q ∈ X).
Proof.
intros X p q Hlt.
apply ispositive_minusNonnegativeRationals in Hlt.
generalize (is_Dcuts_corr X _ Hlt).
apply_pr2_in ispositive_minusNonnegativeRationals Hlt.
apply hinhuniv ; apply sumofmaps ; [ intros Xr | ].
- apply hinhpr ; right.
intro H ; apply Xr.
apply is_Dcuts_bot with (1 := H).
now apply minusNonnegativeRationals_le.
- intros r.
generalize (isdecrel_leNonnegativeRationals p (pr1 r)) ; apply sumofmaps ; [ intros Hle | intros Hnle].
+ apply hinhpr ; left.
now apply is_Dcuts_bot with (1 := pr1 (pr2 r)).
+ apply notge_ltNonnegativeRationals in Hnle.
apply hinhpr ; right.
intro H ; apply (pr2 (pr2 r)).
apply is_Dcuts_bot with (1 := H).
apply_pr2 (plusNonnegativeRationals_lecompat_r p).
rewrite isassoc_plusNonnegativeRationals, minusNonnegativeRationals_plus_r, iscomm_plusNonnegativeRationals.
apply plusNonnegativeRationals_lecompat_l.
now apply lt_leNonnegativeRationals.
now apply lt_leNonnegativeRationals.
Qed.
Section Dcuts_lim.
Context (U : nat → hsubtype NonnegativeRationals)
(U_bot : ∏ n : nat, Dcuts_def_bot (U n))
(U_open : ∏ n : nat, Dcuts_def_open (U n))
(U_corr : ∏ n : nat, Dcuts_def_corr (U n)).
Context (U_cauchy :
∏ eps : NonnegativeRationals,
(0 < eps)%NRat →
hexists
(λ N : nat,
∏ n m : nat, N ≤ n → N ≤ m → (∏ r, U n r → Dcuts_plus_val (U m) (λ q, (q < eps)%NRat) r) × (∏ r, U m r → Dcuts_plus_val (U n) (λ q, (q < eps)%NRat) r))).
Definition Dcuts_lim_cauchy_val : hsubtype NonnegativeRationals :=
λ r : NonnegativeRationals, hexists (λ c : NonnegativeRationals, (0 < c)%NRat × ∑ N : nat, ∏ n : nat, N ≤ n → U n (r + c)).
Lemma Dcuts_lim_cauchy_bot : Dcuts_def_bot Dcuts_lim_cauchy_val.
Proof.
intros r Hr q Hq.
revert Hr ; apply hinhfun ; intros c.
∃ (pr1 c) ; split.
exact (pr1 (pr2 c)).
∃ (pr1 (pr2 (pr2 c))) ; intros n Hn.
apply (U_bot n) with (1 := pr2 (pr2 (pr2 c)) n Hn).
apply plusNonnegativeRationals_lecompat_r.
exact Hq.
Qed.
Lemma Dcuts_lim_cauchy_open : Dcuts_def_open Dcuts_lim_cauchy_val.
Proof.
intros r.
apply hinhfun ; intros c.
∃ (r + (pr1 c / 2))%NRat ; split.
- apply hinhpr.
∃ (pr1 c / 2)%NRat ; split.
+ now apply ispositive_NQhalf, (pr1 (pr2 c)).
+ ∃ (pr1 (pr2 (pr2 c))) ; intros n Hn.
rewrite isassoc_plusNonnegativeRationals, <- NQhalf_double.
now apply (pr2 (pr2 (pr2 c))).
- apply plusNonnegativeRationals_lt_r, ispositive_NQhalf.
exact (pr1 (pr2 c)).
Qed.
Lemma Dcuts_lim_cauchy_corr : Dcuts_def_corr Dcuts_lim_cauchy_val.
Proof.
intros c Hc.
apply ispositive_NQhalf, ispositive_NQhalf in Hc.
generalize (U_cauchy _ Hc) ; clear U_cauchy ; apply hinhuniv ; intros N.
generalize (λ n Hn, pr2 N n (pr1 N) Hn (isreflnatleh _)) ; intro Hu.
generalize (U_corr (pr1 N) _ Hc).
apply hinhuniv ; apply sumofmaps ; intros HuN.
- apply hinhpr ; left.
intro ; apply HuN ; clear HuN.
revert X ; apply hinhuniv ; intros eps.
generalize (natgthorleh (pr1 N) (pr1 (pr2 (pr2 eps)))) ; apply sumofmaps ; intros HN.
+ apply natlthtoleh in HN.
apply (U_bot (pr1 N)) with (1 := pr2 (pr2 (pr2 eps)) _ HN).
pattern c at 2 ;
rewrite (NQhalf_double c), isassoc_plusNonnegativeRationals.
pattern (c / 2)%NRat at 2 ;
rewrite (NQhalf_double (c / 2)%NRat), isassoc_plusNonnegativeRationals.
now apply plusNonnegativeRationals_le_r.
+ generalize (pr2 (pr2 (pr2 eps)) _ (isreflnatleh _)) ; intros HuN'.
generalize (pr1 (Hu _ HN) _ HuN') ; clear Hu HuN'.
apply hinhuniv ; apply sumofmaps ; [ apply sumofmaps ; intros H | intros xy ].
× apply (U_bot (pr1 N)) with (1 := H).
pattern c at 2 ;
rewrite (NQhalf_double c), isassoc_plusNonnegativeRationals.
pattern (c / 2)%NRat at 2 ;
rewrite (NQhalf_double (c / 2)%NRat), isassoc_plusNonnegativeRationals.
now apply plusNonnegativeRationals_le_r.
× apply fromempty.
revert H.
apply_pr2 notlt_geNonnegativeRationals.
pattern c at 2 ;
rewrite (NQhalf_double c), isassoc_plusNonnegativeRationals.
pattern (c / 2)%NRat at 2 ;
rewrite (NQhalf_double (c / 2)%NRat), isassoc_plusNonnegativeRationals.
now apply plusNonnegativeRationals_le_r.
× apply (U_bot (pr1 N)) with (1 := pr1 (pr2 (pr2 xy))).
apply_pr2 (plusNonnegativeRationals_lecompat_r (pr2 (pr1 xy))).
rewrite <- (pr1 (pr2 xy)).
pattern c at 2;
rewrite (NQhalf_double c), isassoc_plusNonnegativeRationals.
pattern (c / 2)%NRat at 2;
rewrite (NQhalf_double (c / 2)%NRat), isassoc_plusNonnegativeRationals.
apply plusNonnegativeRationals_lecompat_l.
apply istrans_leNonnegativeRationals with (c / 2 / 2)%NRat.
apply lt_leNonnegativeRationals.
exact (pr2 (pr2 (pr2 xy))).
now apply plusNonnegativeRationals_le_r.
- rename HuN into q.
generalize (isdecrel_leNonnegativeRationals (pr1 q) (c / 2)%NRat) ; apply sumofmaps ; intros Hq.
+ apply hinhpr ; left.
intro ; apply (pr2 (pr2 q)).
revert X ; apply hinhuniv ; intros eps.
generalize (natgthorleh (pr1 N) (pr1 (pr2 (pr2 eps)))) ; apply sumofmaps ; intros HN.
× apply natlthtoleh in HN.
apply (U_bot (pr1 N)) with (1 := pr2 (pr2 (pr2 eps)) _ HN).
pattern c at 2;
rewrite (NQhalf_double c), isassoc_plusNonnegativeRationals.
apply istrans_leNonnegativeRationals with (c / 2 + c / 2 / 2)%NRat.
apply plusNonnegativeRationals_lecompat_r.
exact Hq.
apply plusNonnegativeRationals_lecompat_l.
pattern (c / 2)%NRat at 2 ;
rewrite (NQhalf_double (c / 2)%NRat), isassoc_plusNonnegativeRationals.
now apply plusNonnegativeRationals_le_r.
× generalize (pr2 (pr2 (pr2 eps)) _ (isreflnatleh _)) ; intros HuN'.
generalize (pr1 (Hu _ HN) _ HuN') ; clear Hu HuN'.
apply hinhuniv ; apply sumofmaps ; [ apply sumofmaps ; intros H | intros xy].
{ apply (U_bot (pr1 N)) with (1 := H).
pattern c at 2;
rewrite (NQhalf_double c), isassoc_plusNonnegativeRationals, iscomm_plusNonnegativeRationals.
apply istrans_leNonnegativeRationals with (c / 2 / 2 + c / 2)%NRat.
apply plusNonnegativeRationals_lecompat_l.
exact Hq.
rewrite iscomm_plusNonnegativeRationals.
apply plusNonnegativeRationals_lecompat_l.
pattern (c / 2)%NRat at 2 ;
rewrite (NQhalf_double (c / 2)%NRat), isassoc_plusNonnegativeRationals.
now apply plusNonnegativeRationals_le_r. }
{ apply fromempty.
revert H.
apply_pr2 notlt_geNonnegativeRationals.
pattern c at 2 ;
rewrite (NQhalf_double c), isassoc_plusNonnegativeRationals.
pattern (c / 2)%NRat at 2 ;
rewrite (NQhalf_double (c / 2)%NRat), isassoc_plusNonnegativeRationals.
now apply plusNonnegativeRationals_le_r. }
{ apply (U_bot (pr1 N)) with (1 := pr1 (pr2 (pr2 xy))).
apply_pr2 (plusNonnegativeRationals_lecompat_r (pr2 (pr1 xy))).
rewrite <- (pr1 (pr2 xy)).
pattern c at 2;
rewrite (NQhalf_double c), !isassoc_plusNonnegativeRationals.
eapply istrans_leNonnegativeRationals.
apply plusNonnegativeRationals_lecompat_r.
now apply Hq.
apply plusNonnegativeRationals_lecompat_l.
pattern (c / 2)%NRat at 2;
rewrite (NQhalf_double (c / 2)%NRat), isassoc_plusNonnegativeRationals.
apply plusNonnegativeRationals_lecompat_l.
apply istrans_leNonnegativeRationals with (c / 2 / 2)%NRat.
apply lt_leNonnegativeRationals.
exact (pr2 (pr2 (pr2 xy))).
now apply plusNonnegativeRationals_le_r. }
+ apply hinhpr ; right.
apply notge_ltNonnegativeRationals in Hq.
∃ (pr1 q - c / 2)%NRat ; split.
× apply hinhpr.
∃ (c / 2 / 2)%NRat ; split.
exact Hc.
∃ (pr1 N) ; intros n Hn.
generalize (pr2 (Hu _ Hn) _ (pr1 (pr2 q))).
apply hinhuniv ; apply sumofmaps ; [ apply sumofmaps ; [intros Xr | intros Yr] | intros xy].
{ apply (U_bot n) with (1 := Xr).
pattern (pr1 q) at 2 ;
rewrite <- (minusNonnegativeRationals_plus_r (c / 2)%NRat (pr1 q)).
apply plusNonnegativeRationals_lecompat_l.
pattern (c / 2)%NRat at 2 ;
rewrite (NQhalf_double (c / 2)%NRat).
now apply plusNonnegativeRationals_le_r.
now apply lt_leNonnegativeRationals. }
{ apply fromempty.
revert Yr.
apply_pr2 notlt_geNonnegativeRationals.
eapply istrans_leNonnegativeRationals, lt_leNonnegativeRationals, Hq.
pattern (c / 2)%NRat at 2 ;
rewrite (NQhalf_double (c / 2)%NRat).
now apply plusNonnegativeRationals_le_r. }
{ apply (U_bot n) with (1 := pr1 (pr2 (pr2 xy))).
apply_pr2 (plusNonnegativeRationals_lecompat_r (pr2 (pr1 xy))).
rewrite <- (pr1 (pr2 xy)).
pattern (pr1 q) at 2;
rewrite <- (minusNonnegativeRationals_plus_r (c / 2)%NRat (pr1 q)), isassoc_plusNonnegativeRationals.
apply plusNonnegativeRationals_lecompat_l.
pattern (c / 2)%NRat at 2;
rewrite (NQhalf_double (c / 2)%NRat).
apply plusNonnegativeRationals_lecompat_l.
apply lt_leNonnegativeRationals.
exact (pr2 (pr2 (pr2 xy))).
now apply lt_leNonnegativeRationals. }
× intro ; apply (pr2 (pr2 q)).
revert X ; apply hinhuniv ; intros eps.
generalize (natgthorleh (pr1 N) (pr1 (pr2 (pr2 eps)))) ; apply sumofmaps ; intros HN.
{ apply natlthtoleh in HN.
apply (U_bot (pr1 N)) with (1 := pr2 (pr2 (pr2 eps)) _ HN).
pattern c at 3;
rewrite (NQhalf_double c), <- isassoc_plusNonnegativeRationals, minusNonnegativeRationals_plus_r.
pattern (c / 2)%NRat at 2;
rewrite (NQhalf_double (c / 2)%NRat), !isassoc_plusNonnegativeRationals, <- (isassoc_plusNonnegativeRationals (pr1 q) (c / 2 / 2)%NRat).
now apply plusNonnegativeRationals_le_r.
now apply lt_leNonnegativeRationals. }
{ generalize (pr2 (pr2 (pr2 eps)) _ (isreflnatleh _)) ; intros HuN.
generalize (pr1 (Hu _ HN) _ HuN) ; clear Hu HuN.
apply hinhuniv ; apply sumofmaps ; [ apply sumofmaps ; intros H | intros xy].
- apply (U_bot (pr1 N)) with (1 := H).
pattern (pr1 q) at 1 ;
rewrite <- (minusNonnegativeRationals_plus_r (c / 2)%NRat (pr1 q)), !isassoc_plusNonnegativeRationals.
apply plusNonnegativeRationals_lecompat_l.
pattern c at 3 ;
rewrite (NQhalf_double c), isassoc_plusNonnegativeRationals.
apply plusNonnegativeRationals_lecompat_l.
pattern (c / 2)%NRat at 2 ;
rewrite (NQhalf_double (c / 2)%NRat), isassoc_plusNonnegativeRationals.
now apply plusNonnegativeRationals_le_r.
now apply lt_leNonnegativeRationals.
- apply fromempty.
revert H.
apply_pr2 notlt_geNonnegativeRationals.
eapply istrans_leNonnegativeRationals, plusNonnegativeRationals_le_r.
eapply istrans_leNonnegativeRationals, plusNonnegativeRationals_le_l.
pattern c at 2 ;
rewrite (NQhalf_double c).
pattern (c / 2)%NRat at 2 ;
rewrite (NQhalf_double (c / 2)%NRat), isassoc_plusNonnegativeRationals.
now apply plusNonnegativeRationals_le_r.
- apply (U_bot (pr1 N)) with (1 := pr1 (pr2 (pr2 xy))).
apply_pr2 (plusNonnegativeRationals_lecompat_r (pr2 (pr1 xy))).
rewrite <- (pr1 (pr2 xy)).
pattern (pr1 q) at 1 ;
rewrite <- (minusNonnegativeRationals_plus_r (c / 2)%NRat (pr1 q)), !isassoc_plusNonnegativeRationals.
pattern (pr1 q - c / 2 + c + pr1 eps)%NRat at 0;
rewrite (isassoc_plusNonnegativeRationals (pr1 q - c / 2)%NRat c (pr1 eps)).
apply plusNonnegativeRationals_lecompat_l.
pattern c at 3;
rewrite (NQhalf_double c).
pattern (c / 2 + c / 2 + pr1 eps)%NRat at 1 ;
rewrite isassoc_plusNonnegativeRationals.
apply plusNonnegativeRationals_lecompat_l.
pattern (c / 2)%NRat at 2;
rewrite (NQhalf_double (c / 2)%NRat).
pattern (c / 2 / 2 + c / 2 / 2 + pr1 eps)%NRat at 1 ;
rewrite isassoc_plusNonnegativeRationals.
apply plusNonnegativeRationals_lecompat_l.
apply istrans_leNonnegativeRationals with (c / 2 / 2)%NRat.
apply lt_leNonnegativeRationals.
exact (pr2 (pr2 (pr2 xy))).
now apply plusNonnegativeRationals_le_r.
now apply lt_leNonnegativeRationals. }
Qed.
End Dcuts_lim.
Definition Dcuts_Cauchy_seq (u : nat → Dcuts) : hProp
:= hProppair (∏ eps : Dcuts,
0 < eps →
hexists
(λ N : nat,
∏ n m : nat, N ≤ n → N ≤ m → u n < Dcuts_plus (u m) eps × u m < Dcuts_plus (u n) eps))
(impred_isaprop _ (λ _, isapropimpl _ _ (pr2 _))).
Definition is_Dcuts_lim_seq (u : nat → Dcuts) (l : Dcuts) : hProp
:= hProppair (∏ eps : Dcuts,
0 < eps →
hexists
(λ N : nat,
∏ n : nat, N ≤ n → u n < Dcuts_plus l eps × l < Dcuts_plus (u n) eps))
(impred_isaprop _ (λ _, isapropimpl _ _ (pr2 _))).
Definition Dcuts_lim_cauchy_seq (U : nat → Dcuts) (HU : Dcuts_Cauchy_seq U) : Dcuts.
Proof.
∃ (Dcuts_lim_cauchy_val (λ n, pr1 (U n))).
repeat split.
- apply Dcuts_lim_cauchy_bot.
intro ; now apply is_Dcuts_bot.
- apply Dcuts_lim_cauchy_open.
- apply Dcuts_lim_cauchy_corr.
+ intro ; now apply is_Dcuts_bot.
+ intro ; now apply is_Dcuts_corr.
+ intros eps Heps.
assert (X : 0 < NonnegativeRationals_to_Dcuts eps)
by (now apply_pr2 isapfun_NonnegativeRationals_to_Dcuts_aux).
generalize (HU _ X) ; clear HU.
apply hinhfun ; intros HU.
∃ (pr1 HU) ; intros n m Hn Hm.
set (pr2 HU n m Hn Hm) ; clearbody d ; clear -d ; rename d into HU.
split.
× now refine (Dcuts_lt_le_rel _ _ (pr1 HU)).
× now refine (Dcuts_lt_le_rel _ _ (pr2 HU)).
Defined.
Lemma Dcuts_Cauchy_seq_impl_ex_lim_seq (U : nat → Dcuts) (HU : Dcuts_Cauchy_seq U) :
is_Dcuts_lim_seq U (Dcuts_lim_cauchy_seq U HU).
Proof.
intros eps.
apply hinhuniv ; intros c'.
generalize (is_Dcuts_open _ _ (pr2 (pr2 c'))).
apply hinhuniv ; intros c.
assert (Hc0 : (0 < pr1 c)%NRat).
{ eapply istrans_le_lt_ltNonnegativeRationals, (pr2 (pr2 c)).
now apply isnonnegative_NonnegativeRationals. }
apply ispositive_NQhalf in Hc0.
generalize (HU _ (pr2 (isapfun_NonnegativeRationals_to_Dcuts_aux _ _) Hc0)).
apply hinhfun ; intros N.
∃ (pr1 N) ; intros n Hn.
generalize (λ n Hn, pr2 N n (pr1 N) Hn (isreflnatleh _)) ; intros Hu.
split.
- eapply istrans_Dcuts_lt_le_rel.
now apply (Hu n Hn).
pattern eps at 1;
rewrite (Dcuts_half_double eps), <- isassoc_Dcuts_plus.
eapply istrans_Dcuts_le_rel, Dcuts_plus_lecompat_l.
+ apply Dcuts_plus_lecompat_r.
intros r Hr.
simpl.
apply is_Dcuts_bot with (1 := pr1 (pr2 c)).
rewrite (NQhalf_double (pr1 c)).
now apply lt_leNonnegativeRationals, plusNonnegativeRationals_ltcompat ; apply Hr.
+ intros r Hr.
generalize (isdecrel_ltNonnegativeRationals r (pr1 c / 2)%NRat) ; apply sumofmaps ; intro Hrc.
× apply hinhpr ; left ; right.
apply is_Dcuts_bot with (1 := pr1 (pr2 c)).
rewrite (NQhalf_double (pr1 c)).
now apply lt_leNonnegativeRationals, plusNonnegativeRationals_ltcompat ; apply Hrc.
× apply notlt_geNonnegativeRationals in Hrc.
generalize (is_Dcuts_open _ _ Hr).
apply hinhuniv ; intros q.
apply hinhpr ; right ; ∃ (r - pr1 c / 2%NRat,, pr1 c / 2%NRat) ; repeat split.
now simpl ; rewrite minusNonnegativeRationals_plus_r.
generalize (pr1 q) (pr1 (pr2 q)) (pr2 (pr2 q)) ; clear q ; intros q UNq Hrq.
apply hinhpr ; ∃ (q - r) ; split.
apply ispositive_minusNonnegativeRationals, Hrq.
∃ (pr1 N) ; intros m Hm.
simpl.
rewrite minusNonnegativeRationals_plus_exchange, iscomm_plusNonnegativeRationals, minusNonnegativeRationals_plus_r.
generalize (Dcuts_lt_le_rel _ _ (pr2 (Hu m Hm)) _ UNq) ; clear Hu.
apply hinhuniv ; apply sumofmaps ; [ apply sumofmaps ; [ intros Xr | intros Yr] | intros xy ; rewrite (pr1 (pr2 xy))].
apply is_Dcuts_bot with (1 := Xr).
now apply minusNonnegativeRationals_le.
simpl in Yr.
apply_pr2_in notge_ltNonnegativeRationals Yr.
apply fromempty, Yr.
apply istrans_leNonnegativeRationals with r.
exact Hrc.
now apply lt_leNonnegativeRationals.
apply is_Dcuts_bot with (1 := pr1 (pr2 (pr2 xy))).
apply_pr2 (plusNonnegativeRationals_lecompat_r (pr1 c / 2)%NRat).
rewrite minusNonnegativeRationals_plus_r.
apply plusNonnegativeRationals_lecompat_l, lt_leNonnegativeRationals.
exact (pr2 (pr2 (pr2 xy))).
apply lt_leNonnegativeRationals.
rewrite <- (pr1 (pr2 xy)).
eapply istrans_le_lt_ltNonnegativeRationals, Hrq.
exact Hrc.
now apply lt_leNonnegativeRationals.
exact Hrc.
simpl ; unfold Dcuts_half_val.
rewrite <- NQhalf_double.
exact (pr1 (pr2 c)).
- apply istrans_Dcuts_le_lt_rel with (Dcuts_plus (U (pr1 N)) (Dcuts_half eps)).
+ intros r.
apply hinhuniv ; intros c''.
generalize (isdecrel_ltNonnegativeRationals r (pr1 c / 2)%NRat) ; apply sumofmaps ; intro Hrc.
× apply hinhpr ; left ; right.
apply is_Dcuts_bot with (1 := pr1 (pr2 c)).
rewrite (NQhalf_double (pr1 c)).
now apply lt_leNonnegativeRationals, plusNonnegativeRationals_ltcompat ; apply Hrc.
× apply notlt_geNonnegativeRationals in Hrc.
apply hinhpr ; right ; ∃ (r - pr1 c / 2%NRat,, pr1 c / 2%NRat) ; simpl ; repeat split.
now rewrite minusNonnegativeRationals_plus_r.
generalize (natgthorleh (pr1 N) (pr1 (pr2 (pr2 c'')))) ; apply sumofmaps ; intro HN.
{ apply natlthtoleh in HN.
apply is_Dcuts_bot with (1 := pr2 (pr2 (pr2 c'')) _ HN).
apply istrans_leNonnegativeRationals with r.
now apply minusNonnegativeRationals_le.
now apply plusNonnegativeRationals_le_r. }
{ generalize (Dcuts_lt_le_rel _ _ (pr1 (Hu _ HN)) _ (pr2 (pr2 (pr2 c'')) _ (isreflnatleh _))).
apply hinhuniv ; apply sumofmaps ; [ apply sumofmaps ; [intros Xr | intros Yr] | intros xy ].
- apply is_Dcuts_bot with (1 := Xr).
apply istrans_leNonnegativeRationals with r.
now apply minusNonnegativeRationals_le.
now apply plusNonnegativeRationals_le_r.
- simpl in Yr. apply_pr2_in notge_ltNonnegativeRationals Yr.
apply fromempty, Yr.
apply istrans_leNonnegativeRationals with r.
exact Hrc.
now apply plusNonnegativeRationals_le_r.
- apply is_Dcuts_bot with (1 := pr1 (pr2 (pr2 xy))).
apply_pr2 (plusNonnegativeRationals_lecompat_r (pr1 c / 2)%NRat).
rewrite minusNonnegativeRationals_plus_r.
apply istrans_leNonnegativeRationals with (r + pr1 c'').
now apply plusNonnegativeRationals_le_r.
pattern (r + pr1 c'') at 1 ;
rewrite (pr1 (pr2 xy)).
apply plusNonnegativeRationals_lecompat_l.
apply lt_leNonnegativeRationals.
exact (pr2 (pr2 (pr2 xy))).
exact Hrc. }
unfold Dcuts_half_val.
rewrite <- NQhalf_double.
exact (pr1 (pr2 c)).
+ pattern eps at 2;
rewrite (Dcuts_half_double eps), <- isassoc_Dcuts_plus.
apply Dcuts_plus_ltcompat_l.
apply istrans_Dcuts_lt_le_rel with (Dcuts_plus (U n) (NonnegativeRationals_to_Dcuts (pr1 c / 2)%NRat)).
now apply (pr2 (Hu _ Hn)).
apply Dcuts_plus_lecompat_r.
intros r Hr.
apply is_Dcuts_bot with (1 := pr1 (pr2 c)).
rewrite (NQhalf_double (pr1 c)).
apply lt_leNonnegativeRationals, plusNonnegativeRationals_ltcompat ; apply Hr.
Qed.
Section Dcuts_of_Dcuts.
Context (E : hsubtype Dcuts).
Context (E_bot : ∏ x : Dcuts, E x → ∏ y : Dcuts, y ≤ x → E y).
Context (E_open : ∏ x : Dcuts, E x → ∃ y : Dcuts, x < y × E y).
Context (E_corr: ∏ c : Dcuts, 0 < c → (¬ E c) ∨ (hexists (λ P, E P × ¬ E (Dcuts_plus P c)))).
Definition Dcuts_of_Dcuts_val : NonnegativeRationals → hProp :=
λ r : NonnegativeRationals, ∃ X : Dcuts, (E X) × (r ∈ X).
Lemma Dcuts_of_Dcuts_bot :
∏ (x : NonnegativeRationals),
Dcuts_of_Dcuts_val x → ∏ y : NonnegativeRationals, (y ≤ x)%NRat → Dcuts_of_Dcuts_val y.
Proof.
intros r Xr n Xn.
revert Xr ; apply hinhfun ; intros X.
∃ (pr1 X) ; split.
exact (pr1 (pr2 X)).
apply is_Dcuts_bot with r.
exact (pr2 (pr2 X)).
exact Xn.
Qed.
Lemma Dcuts_of_Dcuts_open :
∏ (x : NonnegativeRationals),
Dcuts_of_Dcuts_val x →
hexists (λ y : NonnegativeRationals, (Dcuts_of_Dcuts_val y) × (x < y)%NRat).
Proof.
intros r.
apply hinhuniv ; intros X.
generalize (is_Dcuts_open _ _ (pr2 (pr2 X))).
apply hinhfun ; intros n.
∃ (pr1 n) ; split.
apply hinhpr.
∃ (pr1 X) ; split.
exact (pr1 (pr2 X)).
exact (pr1 (pr2 n)).
exact (pr2 (pr2 n)).
Qed.
Lemma Dcuts_of_Dcuts_corr:
Dcuts_def_corr Dcuts_of_Dcuts_val.
Proof.
intros c Hc.
apply ispositive_NQhalf in Hc.
apply (pr2 (isapfun_NonnegativeRationals_to_Dcuts_aux _ _)) in Hc.
generalize (E_corr _ Hc).
apply isapfun_NonnegativeRationals_to_Dcuts_aux in Hc.
apply hinhuniv ; apply sumofmaps ; [intros He | ].
- apply hinhpr ; left.
unfold neg ; apply hinhuniv'.
exact isapropempty.
intros X.
apply He.
apply E_bot with (1 := pr1 (pr2 X)).
intros r Hr.
apply is_Dcuts_bot with c.
exact (pr2 (pr2 X)).
apply lt_leNonnegativeRationals.
eapply istrans_lt_le_ltNonnegativeRationals.
exact Hr.
pattern c at 2 ;
rewrite (NQhalf_double c).
apply plusNonnegativeRationals_le_r.
- apply hinhuniv ; intros X.
generalize (is_Dcuts_corr (pr1 X) _ Hc).
apply hinhfun ; apply sumofmaps ; [intros Xc | ].
+ left.
unfold neg ; apply hinhuniv'.
exact isapropempty.
intros Y.
apply (pr2 (pr2 X)).
apply E_bot with (1 := pr1 (pr2 Y)).
apply Dcuts_lt_le_rel.
apply hinhpr.
∃ c ; split.
2: exact (pr2 (pr2 Y)).
intros H ; apply Xc.
revert H ; apply hinhuniv ; apply sumofmaps ; [ apply sumofmaps ; [intros Xc' | intros Yc'] | ].
× apply is_Dcuts_bot with (1 := Xc').
pattern c at 2.
rewrite (NQhalf_double c).
apply plusNonnegativeRationals_le_r.
× apply fromempty.
revert Yc' ; simpl.
change (¬ (c < c / 2)%NRat).
apply (pr2 (notlt_geNonnegativeRationals _ _)).
pattern c at 2.
rewrite (NQhalf_double c).
apply plusNonnegativeRationals_le_r.
× intros xy.
apply is_Dcuts_bot with (1 := pr1 (pr2 (pr2 xy))).
apply_pr2 (plusNonnegativeRationals_lecompat_r (pr2 (pr1 xy))).
rewrite <- (pr1 (pr2 xy)).
pattern c at 2; rewrite (NQhalf_double c).
apply plusNonnegativeRationals_lecompat_l.
apply lt_leNonnegativeRationals.
exact (pr2 (pr2 (pr2 xy))).
+ intro ; right.
rename X0 into q.
∃ (pr1 q) ; split.
apply hinhpr.
∃ (pr1 X) ; split.
exact (pr1 (pr2 X)).
exact (pr1 (pr2 q)).
unfold neg ; apply hinhuniv'.
exact isapropempty.
intros Y.
apply (pr2 (pr2 X)).
apply E_bot with (1 := pr1 (pr2 Y)).
intros r.
apply hinhuniv ; apply sumofmaps.
apply sumofmaps ; [intros Xc' | intros Yc' ].
× apply is_Dcuts_bot with (1 := pr2 (pr2 Y)).
pattern c at 1;
rewrite (NQhalf_double c).
rewrite <- isassoc_plusNonnegativeRationals.
eapply istrans_leNonnegativeRationals, plusNonnegativeRationals_le_r.
apply lt_leNonnegativeRationals.
apply notge_ltNonnegativeRationals.
intro ; apply (pr2 (pr2 q)).
now apply is_Dcuts_bot with (1 := Xc').
× apply is_Dcuts_bot with (1 := pr2 (pr2 Y)).
pattern c at 1;
rewrite (NQhalf_double c).
rewrite <- isassoc_plusNonnegativeRationals.
eapply istrans_leNonnegativeRationals, plusNonnegativeRationals_le_l.
apply lt_leNonnegativeRationals.
exact Yc'.
× intros xy.
apply is_Dcuts_bot with (1 := pr2 (pr2 Y)).
rewrite (pr1 (pr2 xy)).
pattern c at 1;
rewrite (NQhalf_double c).
rewrite <- isassoc_plusNonnegativeRationals.
eapply istrans_leNonnegativeRationals, plusNonnegativeRationals_lecompat_l.
apply plusNonnegativeRationals_lecompat_r.
apply lt_leNonnegativeRationals, notge_ltNonnegativeRationals.
intro ; apply (pr2 (pr2 q)).
now apply is_Dcuts_bot with (1 := pr1 (pr2 (pr2 xy))).
apply lt_leNonnegativeRationals.
exact (pr2 (pr2 (pr2 xy))).
Qed.
End Dcuts_of_Dcuts.
Definition Dcuts_of_Dcuts (E : hsubtype Dcuts) E_bot E_corr : Dcuts :=
mk_Dcuts (Dcuts_of_Dcuts_val E) (Dcuts_of_Dcuts_bot E) (Dcuts_of_Dcuts_open E) (Dcuts_of_Dcuts_corr E E_bot E_corr).
Section Dcuts_of_Dcuts'.
Context (E : hsubtype NonnegativeRationals).
Context (E_bot : Dcuts_def_bot E).
Context (E_open : Dcuts_def_open E).
Context (E_corr : Dcuts_def_corr E).
Definition Dcuts_of_Dcuts'_val : hsubtype Dcuts :=
λ x : Dcuts, ∃ r : NonnegativeRationals, (¬ (r ∈ x)) × E r.
Lemma Dcuts_of_Dcuts'_bot :
∏ (x : Dcuts),
Dcuts_of_Dcuts'_val x → ∏ y : Dcuts, (y ≤ x) → Dcuts_of_Dcuts'_val y.
Proof.
intros r Xr n Xn.
revert Xr.
apply hinhfun.
intros q.
∃ (pr1 q).
split.
intros Nq.
apply (pr1 (pr2 q)).
now simple refine (Xn _ _).
exact (pr2 (pr2 q)).
Qed.
Lemma Dcuts_of_Dcuts'_open :
∏ (x : Dcuts),
Dcuts_of_Dcuts'_val x →
hexists (λ y : Dcuts, (Dcuts_of_Dcuts'_val y) × (x < y)).
Proof.
intros r.
apply hinhuniv.
intros q.
generalize (E_open _ (pr2 (pr2 q))).
apply hinhfun.
intros s.
∃ (NonnegativeRationals_to_Dcuts (pr1 s)).
split.
- apply hinhpr.
∃ (pr1 s).
split.
+ simpl.
now apply isirrefl_ltNonnegativeRationals.
+ exact (pr1 (pr2 s)).
- apply hinhpr.
∃ (pr1 q).
split.
+ exact (pr1 (pr2 q)).
+ simpl.
exact (pr2 (pr2 s)).
Qed.
Lemma Dcuts_of_Dcuts'_corr:
∏ c : Dcuts, 0 < c → (¬ Dcuts_of_Dcuts'_val c) ∨ (hexists (λ P, Dcuts_of_Dcuts'_val P × ¬ Dcuts_of_Dcuts'_val (Dcuts_plus P c))).
Proof.
intros C HC.
assert (∃ c : NonnegativeRationals, c ∈ C × (0 < c)%NRat).
{ revert HC ; apply hinhuniv ; intro d.
generalize (is_Dcuts_open _ _ (pr2 (pr2 d))).
apply hinhfun.
intro c.
∃ (pr1 c).
split.
- exact (pr1 (pr2 c)).
- eapply istrans_le_lt_ltNonnegativeRationals, (pr2 (pr2 c)).
now apply isnonnegative_NonnegativeRationals. }
revert X ; apply hinhuniv ; intros c.
generalize (E_corr _ (pr2 (pr2 c))).
apply hinhfun.
apply sumofmaps ; [intros Ec | intros q].
- left.
unfold neg ; apply hinhuniv'.
exact isapropempty.
intros r.
apply Ec.
apply E_bot with (1 := (pr2 (pr2 r))).
apply lt_leNonnegativeRationals, notge_ltNonnegativeRationals.
intro H.
apply (pr1 (pr2 r)).
now apply is_Dcuts_bot with (1 := pr1 (pr2 c)).
- right.
apply hinhpr.
∃ (NonnegativeRationals_to_Dcuts (pr1 q)).
split.
+ apply hinhpr.
∃ (pr1 q).
split.
× simpl.
apply isirrefl_ltNonnegativeRationals.
× exact (pr1 (pr2 q)).
+ intro H ; apply (pr2 (pr2 q)).
revert H.
apply hinhuniv.
intros r.
apply E_bot with (1 := (pr2 (pr2 r))).
apply notlt_geNonnegativeRationals.
intro H.
apply (pr1 (pr2 r)).
generalize (isdecrel_ltNonnegativeRationals (pr1 r) (pr1 c)) ; apply sumofmaps ; intros H0.
× apply hinhpr.
left.
right.
apply is_Dcuts_bot with (1 := pr1 (pr2 c)).
now apply lt_leNonnegativeRationals.
× apply notlt_geNonnegativeRationals in H0.
apply hinhpr.
right.
∃ ((pr1 r - pr1 c)%NRat,, pr1 c).
simpl ; split ; [ | split].
now apply pathsinv0, minusNonnegativeRationals_plus_r.
apply_pr2 (plusNonnegativeRationals_ltcompat_r (pr1 c)).
now rewrite minusNonnegativeRationals_plus_r.
exact (pr1 (pr2 c)).
Qed.
End Dcuts_of_Dcuts'.
Lemma Dcuts_of_Dcuts_bij :
∏ x : Dcuts, Dcuts_of_Dcuts (Dcuts_of_Dcuts'_val (pr1 x)) (Dcuts_of_Dcuts'_bot (pr1 x)) (Dcuts_of_Dcuts'_corr (pr1 x) (is_Dcuts_bot x) (is_Dcuts_corr x)) = x.
Proof.
intros x.
apply Dcuts_eq_is_eq.
intros r.
split.
- apply hinhuniv.
intros y.
generalize (pr1 (pr2 y)).
apply hinhuniv.
intros q.
apply is_Dcuts_bot with (1 := pr2 (pr2 q)).
apply lt_leNonnegativeRationals, notge_ltNonnegativeRationals.
intro H.
apply (pr1 (pr2 q)).
now apply is_Dcuts_bot with (1 := pr2 (pr2 y)).
- intros Xr.
generalize (is_Dcuts_open _ _ Xr).
apply hinhfun.
intros q.
∃ (NonnegativeRationals_to_Dcuts (pr1 q)).
split.
+ apply hinhpr.
∃ (pr1 q).
split.
× simpl.
now apply isirrefl_ltNonnegativeRationals.
× exact (pr1 (pr2 q)).
+ simpl.
exact (pr2 (pr2 q)).
Qed.
Lemma Dcuts_of_Dcuts_bij' :
∏ E : hsubtype Dcuts, ∏ (E_bot : ∏ x : Dcuts, E x → ∏ y : Dcuts, y ≤ x → E y) (E_open : ∏ x : Dcuts, E x → ∃ y : Dcuts, x < y × E y),
Dcuts_of_Dcuts'_val (Dcuts_of_Dcuts_val E) = E.
Proof.
intros.
apply funextfun.
intros x.
apply hPropUnivalence.
- apply hinhuniv.
simpl pr1.
intros r ; generalize (pr2 (pr2 r)).
apply hinhuniv.
intros X.
apply E_bot with (1 := pr1 (pr2 X)).
apply Dcuts_lt_le_rel.
apply hinhpr.
∃ (pr1 r).
split.
exact (pr1 (pr2 r)).
exact (pr2 (pr2 X)).
- intros Ex.
generalize (E_open _ Ex).
apply hinhuniv.
intros y.
generalize (pr1 (pr2 y)).
apply hinhfun.
intros r.
∃ (pr1 r).
split.
exact (pr1 (pr2 r)).
apply hinhpr.
∃ (pr1 y).
split.
apply (pr2 (pr2 y)).
apply (pr2 (pr2 r)).
Qed.
Lemma isub_Dcuts_of_Dcuts (E : hsubtype Dcuts) E_bot E_corr :
isUpperBound (X := PreorderedSetEffectiveOrder eo_Dcuts) E (Dcuts_of_Dcuts E E_bot E_corr).
Proof.
intros ;
intros x Ex r Hr.
apply hinhpr.
now ∃ x.
Qed.
Lemma islbub_Dcuts_of_Dcuts (E : hsubtype Dcuts) E_bot E_corr :
isSmallerThanUpperBounds (X := PreorderedSetEffectiveOrder eo_Dcuts) E (Dcuts_of_Dcuts E E_bot E_corr).
Proof.
intros.
intros x Hx ; simpl.
intros r ; apply hinhuniv ;
intros y.
generalize (Hx _ (pr1 (pr2 y))).
intros H ; simple refine (H _ _).
exact (pr2 (pr2 y)).
Qed.
Lemma islub_Dcuts_of_Dcuts (E : hsubtype eo_Dcuts) E_bot E_corr :
isLeastUpperBound (X := PreorderedSetEffectiveOrder eo_Dcuts) E (Dcuts_of_Dcuts E E_bot E_corr).
Proof.
split.
exact (isub_Dcuts_of_Dcuts E E_bot E_corr).
exact (islbub_Dcuts_of_Dcuts E E_bot E_corr).
Qed.
Global Opaque Dcuts.
Global Opaque Dcuts_le_rel
Dcuts_lt_rel
Dcuts_ap_rel.
Global Opaque Dcuts_zero
Dcuts_one
Dcuts_two
Dcuts_plus
Dcuts_minus
Dcuts_mult
Dcuts_inv
Dcuts_max
Dcuts_min
Dcuts_half.
Global Opaque Dcuts_lim_cauchy_seq.
Delimit Scope NR_scope with NR.
Local Open Scope NR_scope.
Definition NonnegativeReals : ConstructiveCommutativeDivisionRig
:= Dcuts_ConstructiveCommutativeDivisionRig.
Definition EffectivelyOrdered_NonnegativeReals : EffectivelyOrderedSet.
Proof.
∃ NonnegativeReals.
apply (pairEffectiveOrder Dcuts_le_rel Dcuts_lt_rel iseo_Dcuts_le_lt_rel).
Defined.
Definition apNonnegativeReals : hrel NonnegativeReals := CCDRap.
Definition leNonnegativeReals : po NonnegativeReals := EOle (X := EffectivelyOrdered_NonnegativeReals).
Definition geNonnegativeReals : po NonnegativeReals := EOge (X := EffectivelyOrdered_NonnegativeReals).
Definition ltNonnegativeReals : StrongOrder NonnegativeReals := EOlt (X := EffectivelyOrdered_NonnegativeReals).
Definition gtNonnegativeReals : StrongOrder NonnegativeReals := EOgt (X := EffectivelyOrdered_NonnegativeReals).
Notation "x ≠ y" := (apNonnegativeReals x y) (at level 70, no associativity) : NR_scope.
Notation "x <= y" := (EOle_rel (X := EffectivelyOrdered_NonnegativeReals) x y) : NR_scope.
Notation "x >= y" := (EOge_rel (X := EffectivelyOrdered_NonnegativeReals) x y) : NR_scope.
Notation "x < y" := (EOlt_rel (X := EffectivelyOrdered_NonnegativeReals) x y) : NR_scope.
Notation "x > y" := (EOgt_rel (X := EffectivelyOrdered_NonnegativeReals) eo_Dcuts x y) : NR_scope.
Definition zeroNonnegativeReals : NonnegativeReals := CCDRzero.
Definition oneNonnegativeReals : NonnegativeReals := CCDRone.
Definition twoNonnegativeReals : NonnegativeReals := Dcuts_two.
Definition plusNonnegativeReals : binop NonnegativeReals := CCDRplus.
Definition multNonnegativeReals : binop NonnegativeReals := CCDRmult.
Definition NonnegativeRationals_to_NonnegativeReals (r : NonnegativeRationals) : NonnegativeReals :=
NonnegativeRationals_to_Dcuts r.
Definition nat_to_NonnegativeReals (n : nat) : NonnegativeReals :=
NonnegativeRationals_to_NonnegativeReals (nat_to_NonnegativeRationals n).
Notation "0" := zeroNonnegativeReals : NR_scope.
Notation "1" := oneNonnegativeReals : NR_scope.
Notation "2" := twoNonnegativeReals : NR_scope.
Notation "x + y" := (plusNonnegativeReals x y) (at level 50, left associativity) : NR_scope.
Notation "x * y" := (multNonnegativeReals x y) (at level 40, left associativity) : NR_scope.
Definition invNonnegativeReals (x : NonnegativeReals) (Hx0 : x ≠ 0) : NonnegativeReals :=
CCDRinv x Hx0.
Definition divNonnegativeReals (x y : NonnegativeReals) (Hy0 : y ≠ 0) : NonnegativeReals :=
x × (invNonnegativeReals y Hy0).
Definition NonnegativeReals_to_hsubtypeNonnegativeRationals :
NonnegativeReals → (hsubtype NonnegativeRationals) := pr1.
Definition hsubtypeNonnegativeRationals_to_NonnegativeReals
(X : NonnegativeRationals → hProp)
(Xbot : ∏ x : NonnegativeRationals,
X x → ∏ y : NonnegativeRationals, (y ≤ x)%NRat → X y)
(Xopen : ∏ x : NonnegativeRationals,
X x →
hexists (λ y : NonnegativeRationals, (X y) × (x < y)%NRat))
(Xtop : Dcuts_def_corr X) : NonnegativeReals :=
mk_Dcuts X Xbot Xopen Xtop.
Definition minusNonnegativeReals : binop NonnegativeReals := Dcuts_minus.
Definition halfNonnegativeReals : unop NonnegativeReals := Dcuts_half.
Definition maxNonnegativeReals : binop NonnegativeReals := Dcuts_max.
Definition minNonnegativeReals : binop NonnegativeReals := Dcuts_min.
Notation "x - y" := (minusNonnegativeReals x y) (at level 50, left associativity) : NR_scope.
Notation "x / 2" := (halfNonnegativeReals x) (at level 35, no associativity) : NR_scope.
Lemma NonnegativeRationals_to_NonnegativeReals_lt :
∏ x y : NonnegativeRationals,
(x < y)%NRat ↔
NonnegativeRationals_to_NonnegativeReals x < NonnegativeRationals_to_NonnegativeReals y.
Proof.
intros x y ; split.
- intros Hxy.
apply hinhpr.
∃ x.
split ; simpl.
+ now apply isirrefl_ltNonnegativeRationals.
+ exact Hxy.
- apply hinhuniv ; simpl ; intros q.
eapply istrans_le_lt_ltNonnegativeRationals, (pr2 (pr2 q)).
apply notlt_geNonnegativeRationals.
exact (pr1 (pr2 q)).
Qed.
Lemma NonnegativeRationals_to_NonnegativeReals_le :
∏ x y : NonnegativeRationals,
(x ≤ y)%NRat ↔
NonnegativeRationals_to_NonnegativeReals x ≤ NonnegativeRationals_to_NonnegativeReals y.
Proof.
intros x y ; split.
- intros H.
apply Dcuts_nlt_ge.
intro H0.
revert H.
apply_pr2 notge_ltNonnegativeRationals.
apply_pr2 NonnegativeRationals_to_NonnegativeReals_lt.
exact H0.
- intros H.
apply notlt_geNonnegativeRationals.
intros H0.
revert H.
apply Dcuts_gt_nle.
apply NonnegativeRationals_to_NonnegativeReals_lt.
exact H0.
Qed.
Lemma NonnegativeRationals_to_NonnegativeReals_zero :
NonnegativeRationals_to_NonnegativeReals 0%NRat = 0.
Proof.
reflexivity.
Qed.
Lemma NonnegativeRationals_to_NonnegativeReals_one :
NonnegativeRationals_to_NonnegativeReals 1%NRat = 1.
Proof.
reflexivity.
Qed.
Lemma NonnegativeRationals_to_NonnegativeReals_plus :
∏ x y : NonnegativeRationals, NonnegativeRationals_to_NonnegativeReals (x + y)%NRat = NonnegativeRationals_to_NonnegativeReals x + NonnegativeRationals_to_NonnegativeReals y.
Proof.
intros x y.
apply Dcuts_eq_is_eq.
intros r.
split.
- intros Hr.
generalize (eq0orgt0NonnegativeRationals y) ; apply sumofmaps ; intros Hy.
2: generalize (eq0orgt0NonnegativeRationals x) ; apply sumofmaps ; intros Hx.
+ rewrite Hy in Hr |- × ; clear y Hy.
rewrite isrunit_zeroNonnegativeRationals in Hr.
rewrite isrunit_Dcuts_plus_zero.
exact Hr.
+ rewrite Hx in Hr |- × ; clear x Hx.
rewrite islunit_zeroNonnegativeRationals in Hr.
rewrite islunit_Dcuts_plus_zero.
exact Hr.
+ assert (Hxy : (0 < x + y)%NRat).
{ apply ispositive_plusNonnegativeRationals_r.
exact Hy. }
apply hinhpr ; right.
∃ ((r × (x / (x + y)))%NRat,,(r × (y / (x + y)))%NRat).
simpl.
split ; [ | split].
× unfold divNonnegativeRationals.
rewrite <- isldistr_mult_plusNonnegativeRationals, <- isrdistr_mult_plusNonnegativeRationals, isrinv_NonnegativeRationals, isrunit_oneNonnegativeRationals.
reflexivity.
exact Hxy.
× unfold divNonnegativeRationals.
rewrite <- isassoc_multNonnegativeRationals, (iscomm_multNonnegativeRationals _ x), isassoc_multNonnegativeRationals.
pattern x at 3 ;
rewrite <- (isrunit_oneNonnegativeRationals x).
apply multNonnegativeRationals_ltcompat_l.
exact Hx.
rewrite <- (isrinv_NonnegativeRationals (x + y)%NRat).
apply multNonnegativeRationals_ltcompat_r.
apply ispositive_invNonnegativeRationals.
exact Hxy.
exact Hr.
exact Hxy.
× unfold divNonnegativeRationals.
rewrite <- isassoc_multNonnegativeRationals, (iscomm_multNonnegativeRationals _ y), isassoc_multNonnegativeRationals.
pattern y at 3 ;
rewrite <- (isrunit_oneNonnegativeRationals y).
apply multNonnegativeRationals_ltcompat_l.
exact Hy.
rewrite <- (isrinv_NonnegativeRationals (x + y)%NRat).
apply multNonnegativeRationals_ltcompat_r.
apply ispositive_invNonnegativeRationals.
exact Hxy.
exact Hr.
exact Hxy.
- apply hinhuniv ; apply sumofmaps ; [ apply sumofmaps ; [intros Hrx | intros Hry] | intros xy ; rewrite (pr1 (pr2 xy))] ; simpl.
+ eapply istrans_lt_le_ltNonnegativeRationals, plusNonnegativeRationals_le_r.
exact Hrx.
+ eapply istrans_lt_le_ltNonnegativeRationals, plusNonnegativeRationals_le_l.
exact Hry.
+ apply plusNonnegativeRationals_ltcompat.
exact (pr1 (pr2 (pr2 xy))).
exact (pr2 (pr2 (pr2 xy))).
Qed.
Lemma NonnegativeRationals_to_NonnegativeReals_minus :
∏ x y : NonnegativeRationals, NonnegativeRationals_to_NonnegativeReals (x - y)%NRat = NonnegativeRationals_to_NonnegativeReals x - NonnegativeRationals_to_NonnegativeReals y.
Proof.
intros x y.
generalize (isdecrel_leNonnegativeRationals x y) ; apply sumofmaps ; intros Hxy.
- rewrite minusNonnegativeRationals_eq_zero, Dcuts_minus_eq_zero.
reflexivity.
apply NonnegativeRationals_to_NonnegativeReals_le.
exact Hxy.
exact Hxy.
- apply Dcuts_minus_correct_r.
rewrite <- NonnegativeRationals_to_NonnegativeReals_plus, minusNonnegativeRationals_plus_r.
reflexivity.
apply lt_leNonnegativeRationals.
apply notge_ltNonnegativeRationals.
exact Hxy.
Qed.
Lemma NonnegativeRationals_to_NonnegativeReals_mult :
∏ x y : NonnegativeRationals, NonnegativeRationals_to_NonnegativeReals (x × y)%NRat = NonnegativeRationals_to_NonnegativeReals x × NonnegativeRationals_to_NonnegativeReals y.
Proof.
intros x y.
generalize (eq0orgt0NonnegativeRationals x) ; apply sumofmaps ; [intros → | intros Hx].
- rewrite islabsorb_zero_multNonnegativeRationals, islabsorb_Dcuts_mult_zero.
reflexivity.
- rewrite <- (Dcuts_NQmult_mult _ _ Hx).
apply Dcuts_eq_is_eq.
intros r.
split.
+ simpl ; intros Hr ; apply hinhpr.
∃ (r / x)%NRat.
split.
× apply pathsinv0, multdivNonnegativeRationals.
exact Hx.
× rewrite <- (isrunit_oneNonnegativeRationals y), <- (isrinv_NonnegativeRationals x), <- isassoc_multNonnegativeRationals.
apply multNonnegativeRationals_ltcompat_r.
apply ispositive_invNonnegativeRationals.
exact Hx.
rewrite iscomm_multNonnegativeRationals.
exact Hr.
exact Hx.
+ apply hinhuniv.
simpl.
intros ry.
rewrite (pr1 (pr2 ry)).
apply multNonnegativeRationals_ltcompat_l.
exact Hx.
exact (pr2 (pr2 ry)).
Qed.
Lemma NonnegativeRationals_to_NonnegativeReals_nattorig :
∏ n : nat, NonnegativeRationals_to_NonnegativeReals (nattorig n) = nattorig n.
Proof.
induction n as [|n IHn].
- reflexivity.
- rewrite !nattorigS.
rewrite NonnegativeRationals_to_NonnegativeReals_plus, IHn.
reflexivity.
Qed.
Lemma nat_to_NonnegativeReals_O :
nat_to_NonnegativeReals O = 0.
Proof.
unfold nat_to_NonnegativeReals.
rewrite nat_to_NonnegativeRationals_O.
reflexivity.
Qed.
Lemma nat_to_NonnegativeReals_Sn :
∏ n : nat, nat_to_NonnegativeReals (S n) = nat_to_NonnegativeReals n + 1.
Proof.
intros n.
unfold nat_to_NonnegativeReals.
rewrite nat_to_NonnegativeRationals_Sn.
rewrite NonnegativeRationals_to_NonnegativeReals_plus.
reflexivity.
Qed.
Order, apartness, and equality
Definition istrans_leNonnegativeReals :
∏ x y z : NonnegativeReals, x ≤ y → y ≤ z → x ≤ z
:= istrans_EOle (X := EffectivelyOrdered_NonnegativeReals).
Definition isrefl_leNonnegativeReals :
∏ x : NonnegativeReals, x ≤ x
:= isrefl_EOle (X := EffectivelyOrdered_NonnegativeReals).
Lemma isantisymm_leNonnegativeReals :
∏ x y : NonnegativeReals, x ≤ y × y ≤ x ↔ x = y.
Proof.
intros x y ; split.
- intros H.
apply Dcuts_le_ge_eq.
now apply (pr1 H).
now apply (pr2 H).
- intros →.
split ; apply isrefl_leNonnegativeReals.
Qed.
Lemma eqNonnegativeReals_le :
∏ x y : NonnegativeReals, x = y → x ≤ y.
Proof.
intros x y →.
apply isrefl_leNonnegativeReals.
Qed.
Definition istrans_ltNonnegativeReals :
∏ x y z : NonnegativeReals, x < y → y < z → x < z
:= istrans_EOlt (X := EffectivelyOrdered_NonnegativeReals).
Definition iscotrans_ltNonnegativeReals :
∏ x y z : NonnegativeReals, x < z → x < y ∨ y < z
:= iscotrans_Dcuts_lt_rel.
Definition isirrefl_ltNonnegativeReals :
∏ x : NonnegativeReals, ¬ (x < x)
:= isirrefl_EOlt (X := EffectivelyOrdered_NonnegativeReals).
Definition istrans_lt_le_ltNonnegativeReals :
∏ x y z : NonnegativeReals, x < y → y ≤ z → x < z
:= istrans_EOlt_le (X := EffectivelyOrdered_NonnegativeReals).
Definition istrans_le_lt_ltNonnegativeReals :
∏ x y z : NonnegativeReals, x ≤ y → y < z → x < z
:= istrans_EOle_lt (X := EffectivelyOrdered_NonnegativeReals).
Lemma lt_leNonnegativeReals :
∏ x y : NonnegativeReals, x < y → x ≤ y.
Proof.
exact Dcuts_lt_le_rel.
Qed.
Lemma notlt_leNonnegativeReals :
∏ x y : NonnegativeReals, ¬ (x < y) ↔ (y ≤ x).
Proof.
exact Dcuts_nlt_ge.
Qed.
Lemma isnonnegative_NonnegativeReals :
∏ x : NonnegativeReals, 0 ≤ x.
Proof.
intros x.
now apply Dcuts_ge_0.
Qed.
Lemma isnonnegative_NonnegativeReals' :
∏ x : NonnegativeReals, ¬ (x < 0).
Proof.
intros x.
now apply Dcuts_notlt_0.
Qed.
Lemma le0_NonnegativeReals :
∏ x : NonnegativeReals, (x ≤ 0) ↔ (x = 0).
Proof.
intros x ; split ; intros Hx.
apply isantisymm_leNonnegativeReals.
- split.
exact Hx.
apply isnonnegative_NonnegativeReals.
- rewrite Hx.
apply isrefl_leNonnegativeReals.
Qed.
Lemma ap_ltNonnegativeReals :
∏ x y : NonnegativeReals, x ≠ y ↔ (x < y) ⨿ (y < x).
Proof.
now intros x y ; split.
Qed.
Definition isirrefl_apNonnegativeReals :
∏ x : NonnegativeReals, ¬ (x ≠ x)
:= isirrefl_Dcuts_ap_rel.
Definition issymm_apNonnegativeReals :
∏ x y : NonnegativeReals, x ≠ y → y ≠ x
:= issymm_Dcuts_ap_rel.
Definition iscotrans_apNonnegativeReals :
∏ x y z : NonnegativeReals, x ≠ z → x ≠ y ∨ y ≠ z
:= iscotrans_Dcuts_ap_rel.
Lemma istight_apNonnegativeReals:
∏ x y : NonnegativeReals, (¬ (x ≠ y)) ↔ (x = y).
Proof.
intros x y.
split.
- now apply istight_Dcuts_ap_rel.
- intros →.
now apply isirrefl_Dcuts_ap_rel.
Qed.
Lemma ispositive_apNonnegativeReals :
∏ x : NonnegativeReals, x ≠ 0 ↔ 0 < x.
Proof.
intros X ; split.
- apply sumofmaps ; [ | intros Hlt ].
apply hinhuniv ; intros x.
apply fromempty.
now apply (Dcuts_zero_empty _ (pr2 (pr2 x))).
exact Hlt.
- intros Hx.
now right.
Qed.
Definition isnonzeroNonnegativeReals: 1 ≠ 0
:= isnonzeroCCDR (X := NonnegativeReals).
Lemma ispositive_oneNonnegativeReals: 0 < 1.
Proof.
apply ispositive_apNonnegativeReals.
exact isnonzeroNonnegativeReals.
Qed.
addition
Definition ap_plusNonnegativeReals:
∏ x x' y y' : NonnegativeReals,
x + y ≠ x' + y' → x ≠ x' ∨ y ≠ y'
:= apCCDRplus (X := NonnegativeReals).
Definition islunit_zero_plusNonnegativeReals:
∏ x : NonnegativeReals, 0 + x = x
:= islunit_CCDRzero_CCDRplus (X := NonnegativeReals).
Definition isrunit_zero_plusNonnegativeReals:
∏ x : NonnegativeReals, x + 0 = x
:= isrunit_CCDRzero_CCDRplus (X := NonnegativeReals).
Definition isassoc_plusNonnegativeReals:
∏ x y z : NonnegativeReals, x + y + z = x + (y + z)
:= isassoc_CCDRplus (X := NonnegativeReals).
Definition iscomm_plusNonnegativeReals:
∏ x y : NonnegativeReals, x + y = y + x
:= iscomm_CCDRplus (X := NonnegativeReals).
Definition plusNonnegativeReals_ltcompat_l :
∏ x y z: NonnegativeReals, (y < z) ↔ (y + x < z + x)
:= Dcuts_plus_ltcompat_l.
Definition plusNonnegativeReals_ltcompat_r :
∏ x y z: NonnegativeReals, (y < z) ↔ (x + y < x + z)
:= Dcuts_plus_ltcompat_r.
Lemma plusNonnegativeReals_ltcompat :
∏ x y z t : NonnegativeReals, x < y → z < t → x + z < y + t.
Proof.
intros x y z t Hxy Hzt.
eapply istrans_ltNonnegativeReals, plusNonnegativeReals_ltcompat_l.
now apply plusNonnegativeReals_ltcompat_r.
exact Hxy.
Qed.
Lemma plusNonnegativeReals_lt_l:
∏ x y : NonnegativeReals, 0 < x ↔ y < x + y.
Proof.
intros x y.
pattern y at 1.
rewrite <- (islunit_zero_plusNonnegativeReals y).
now apply plusNonnegativeReals_ltcompat_l.
Qed.
Lemma plusNonnegativeReals_lt_r:
∏ x y : NonnegativeReals, 0 < y ↔ x < x + y.
Proof.
intros x y.
pattern x at 1.
rewrite <- (isrunit_zero_plusNonnegativeReals x).
now apply plusNonnegativeReals_ltcompat_r.
Qed.
Definition plusNonnegativeReals_lecompat_l :
∏ x y z: NonnegativeReals, (y ≤ z) ↔ (y + x ≤ z + x)
:= Dcuts_plus_lecompat_l.
Definition plusNonnegativeReals_lecompat_r :
∏ x y z: NonnegativeReals, (y ≤ z) ↔ (x + y ≤ x + z)
:= Dcuts_plus_lecompat_r.
Lemma plusNonnegativeReals_lecompat :
∏ x y x' y' : NonnegativeReals,
x ≤ y → x' ≤ y' → x + x' ≤ y + y'.
Proof.
intros x y x' y' H H'.
refine (istrans_leNonnegativeReals _ _ _ _ _).
apply plusNonnegativeReals_lecompat_l.
apply H.
apply plusNonnegativeReals_lecompat_r.
exact H'.
Qed.
Lemma plusNonnegativeReals_le_l :
∏ (x y : NonnegativeReals), x ≤ x + y.
Proof.
exact Dcuts_plus_le_l.
Qed.
Lemma plusNonnegativeReals_le_r :
∏ (x y : NonnegativeReals), y ≤ x + y.
Proof.
exact Dcuts_plus_le_r.
Qed.
Lemma plusNonnegativeReals_le_ltcompat :
∏ x y z t : NonnegativeReals,
x ≤ y → z < t → x + z < y + t.
Proof.
intros x y z t Hxy Hzt.
eapply istrans_le_lt_ltNonnegativeReals, plusNonnegativeReals_ltcompat_r, Hzt.
now apply plusNonnegativeReals_lecompat_l.
Qed.
Lemma plusNonnegativeReals_eqcompat_l :
∏ x y z: NonnegativeReals, (y + x = z + x) ↔ (y = z).
Proof.
intros x y z ; split.
- intro H ;
apply isantisymm_leNonnegativeReals ; split.
+ apply_pr2 (plusNonnegativeReals_lecompat_l x).
rewrite H ; refine (isrefl_leNonnegativeReals _).
+ apply_pr2 (plusNonnegativeReals_lecompat_l x).
rewrite H ; refine (isrefl_leNonnegativeReals _).
- now intros →.
Qed.
Lemma plusNonnegativeReals_eqcompat_r :
∏ x y z: NonnegativeReals, (x + y = x + z) ↔ (y = z).
Proof.
intros x y z.
rewrite ! (iscomm_plusNonnegativeReals x).
now apply plusNonnegativeReals_eqcompat_l.
Qed.
Lemma plusNonnegativeReals_apcompat_l :
∏ x y z: NonnegativeReals, (y ≠ z) ↔ (y + x ≠ z + x).
Proof.
intros a b c.
split.
- intro H.
apply ap_ltNonnegativeReals.
apply_pr2_in ap_ltNonnegativeReals H.
induction H as [H | H].
+ left ;
now apply plusNonnegativeReals_ltcompat_l.
+ right ;
now apply plusNonnegativeReals_ltcompat_l.
- now apply islapbinop_Dcuts_plus.
Qed.
Lemma plusNonnegativeReals_apcompat_r :
∏ x y z: NonnegativeReals, (y ≠ z) ↔ (x + y ≠ x + z).
Proof.
intros x y z.
rewrite ! (iscomm_plusNonnegativeReals x).
now apply plusNonnegativeReals_apcompat_l.
Qed.
Subtraction
Definition minusNonnegativeReals_plus_r :
∏ x y z : NonnegativeReals, z ≤ y → x = y - z → y = x + z
:= Dcuts_minus_plus_r.
Definition minusNonnegativeReals_eq_zero :
∏ x y : NonnegativeReals, x ≤ y → x - y = 0
:= Dcuts_minus_eq_zero.
Definition minusNonnegativeReals_correct_r :
∏ x y z : NonnegativeReals, x = y + z → y = x - z
:= Dcuts_minus_correct_r.
Definition minusNonnegativeReals_correct_l :
∏ x y z : NonnegativeReals, x = y + z → z = x - y
:= Dcuts_minus_correct_l.
Definition ispositive_minusNonnegativeReals :
∏ x y : NonnegativeReals, (y < x) ↔ (0 < x - y)
:= ispositive_Dcuts_minus.
Definition minusNonnegativeReals_le :
∏ x y : NonnegativeReals, x - y ≤ x
:= Dcuts_minus_le.
Multiplication
Definition ap_multNonnegativeReals:
∏ x x' y y' : NonnegativeReals,
x × y ≠ x' × y' → x ≠ x' ∨ y ≠ y'
:= apCCDRmult (X := NonnegativeReals).
Definition islunit_one_multNonnegativeReals:
∏ x : NonnegativeReals, 1 × x = x
:= islunit_CCDRone_CCDRmult (X := NonnegativeReals).
Definition isrunit_one_multNonnegativeReals:
∏ x : NonnegativeReals, x × 1 = x
:= isrunit_CCDRone_CCDRmult (X := NonnegativeReals).
Definition isassoc_multNonnegativeReals:
∏ x y z : NonnegativeReals, x × y × z = x × (y × z)
:= isassoc_CCDRmult (X := NonnegativeReals).
Definition iscomm_multNonnegativeReals:
∏ x y : NonnegativeReals, x × y = y × x
:= iscomm_CCDRmult (X := NonnegativeReals).
Definition islabsorb_zero_multNonnegativeReals:
∏ x : NonnegativeReals, 0 × x = 0
:= islabsorb_CCDRzero_CCDRmult (X := NonnegativeReals).
Definition israbsorb_zero_multNonnegativeReals:
∏ x : NonnegativeReals, x × 0 = 0
:= israbsorb_CCDRzero_CCDRmult (X := NonnegativeReals).
Definition multNonnegativeReals_ltcompat_l :
∏ x y z: NonnegativeReals, (0 < x) → (y < z) → (y × x < z × x)
:= Dcuts_mult_ltcompat_l.
Definition multNonnegativeReals_ltcompat_l' :
∏ x y z: NonnegativeReals, (y × x < z × x) → (y < z)
:= Dcuts_mult_ltcompat_l'.
Definition multNonnegativeReals_lecompat_l :
∏ x y z: NonnegativeReals, (0 < x) → (y × x ≤ z × x) → (y ≤ z)
:= Dcuts_mult_lecompat_l.
Definition multNonnegativeReals_lecompat_l' :
∏ x y z: NonnegativeReals, (y ≤ z) → (y × x ≤ z × x)
:= Dcuts_mult_lecompat_l'.
Definition multNonnegativeReals_ltcompat_r :
∏ x y z: NonnegativeReals, (0 < x) → (y < z) → (x × y < x × z)
:= Dcuts_mult_ltcompat_r.
Definition multNonnegativeReals_ltcompat_r' :
∏ x y z: NonnegativeReals, (x × y < x × z) → (y < z)
:= Dcuts_mult_ltcompat_r'.
Definition multNonnegativeReals_lecompat_r :
∏ x y z: NonnegativeReals, (0 < x) → (x × y ≤ x × z) → (y ≤ z)
:= Dcuts_mult_lecompat_r.
Definition multNonnegativeReals_lecompat_r' :
∏ x y z: NonnegativeReals, (y ≤ z) → (x × y ≤ x × z)
:= Dcuts_mult_lecompat_r'.
Multiplicative Inverse
Definition islinv_invNonnegativeReals:
∏ (x : NonnegativeReals) (Hx0 : x ≠ 0), invNonnegativeReals x Hx0 × x = 1
:= islinv_CCDRinv (X := NonnegativeReals).
Definition isrinv_invNonnegativeReals:
∏ (x : NonnegativeReals) (Hx0 : x ≠ 0), x × invNonnegativeReals x Hx0 = 1
:= isrinv_CCDRinv (X := NonnegativeReals).
Definition isldistr_plus_multNonnegativeReals:
∏ x y z : NonnegativeReals, z × (x + y) = z × x + z × y
:= isldistr_CCDRplus_CCDRmult (X := NonnegativeReals).
Definition isrdistr_plus_multNonnegativeReals:
∏ x y z : NonnegativeReals, (x + y) × z = x × z + y × z
:= isrdistr_CCDRplus_CCDRmult (X := NonnegativeReals).
maximum
Lemma iscomm_maxNonnegativeReals :
∏ x y : NonnegativeReals,
maxNonnegativeReals x y = maxNonnegativeReals y x.
Proof.
exact iscomm_Dcuts_max.
Qed.
Lemma isassoc_maxNonnegativeReals :
∏ x y z : NonnegativeReals,
maxNonnegativeReals (maxNonnegativeReals x y) z =
maxNonnegativeReals x (maxNonnegativeReals y z).
Proof.
exact isassoc_Dcuts_max.
Qed.
Lemma isldistr_max_plusNonnegativeReals :
∏ x y z : NonnegativeReals,
z + maxNonnegativeReals x y = maxNonnegativeReals (z + x) (z + y).
Proof.
exact isldistr_Dcuts_max_plus.
Qed.
Lemma isrdistr_max_plusNonnegativeReals :
∏ x y z : NonnegativeReals,
maxNonnegativeReals x y + z = maxNonnegativeReals (x + z) (y + z).
Proof.
intros x y z.
rewrite !(iscomm_plusNonnegativeReals _ z).
now apply isldistr_max_plusNonnegativeReals.
Qed.
Lemma isldistr_max_multNonnegativeReals :
∏ x y z : NonnegativeReals,
z × maxNonnegativeReals x y = maxNonnegativeReals (z × x) (z × y).
Proof.
exact isldistr_Dcuts_max_mult.
Qed.
Lemma isrdistr_max_multNonnegativeReals :
∏ x y z : NonnegativeReals,
maxNonnegativeReals x y × z = maxNonnegativeReals (x × z) (y × z).
Proof.
intros x y z.
rewrite !(iscomm_multNonnegativeReals _ z).
now apply isldistr_max_multNonnegativeReals.
Qed.
Lemma maxNonnegativeReals_carac_l :
∏ x y : NonnegativeReals,
y ≤ x → maxNonnegativeReals x y = x.
Proof.
exact Dcuts_max_carac_l.
Qed.
Lemma maxNonnegativeReals_carac_r :
∏ x y : NonnegativeReals,
x ≤ y → maxNonnegativeReals x y = y.
Proof.
exact Dcuts_max_carac_r.
Qed.
Lemma maxNonnegativeReals_le_l :
∏ x y : NonnegativeReals,
x ≤ maxNonnegativeReals x y.
Proof.
exact Dcuts_max_le_l.
Qed.
Lemma maxNonnegativeReals_le_r :
∏ x y : NonnegativeReals,
y ≤ maxNonnegativeReals x y.
Proof.
exact Dcuts_max_le_r.
Qed.
Lemma maxNonnegativeReals_lt :
∏ x y z : NonnegativeReals,
x < z → y < z
→ maxNonnegativeReals x y < z.
Proof.
exact Dcuts_max_lt.
Qed.
Lemma maxNonnegativeReals_le :
∏ x y z : NonnegativeReals,
x ≤ z → y ≤ z
→ maxNonnegativeReals x y ≤ z.
Proof.
exact Dcuts_max_le.
Qed.
Lemma maxNonnegativeReals_minus_plus:
∏ x y : NonnegativeReals,
maxNonnegativeReals x y = (x - y) + y.
Proof.
intros x y.
apply pathsinv0.
now apply Dcuts_minus_plus_max.
Qed.
Lemma isldistr_minus_multNonnegativeReals :
∏ x y z : NonnegativeReals, z × (x - y) = z × x - z × y.
Proof.
intros x y z.
apply plusNonnegativeReals_eqcompat_l with (Dcuts_mult z y).
rewrite <- isldistr_plus_multNonnegativeReals, <- !maxNonnegativeReals_minus_plus.
apply isldistr_max_multNonnegativeReals.
Qed.
Lemma isrdistr_minus_multNonnegativeReals :
∏ x y z : NonnegativeReals, (x - y) × z = x × z - y × z.
Proof.
intros x y z.
rewrite !(iscomm_multNonnegativeReals _ z).
now apply isldistr_minus_multNonnegativeReals.
Qed.
Lemma isassoc_minusNonnegativeReals :
∏ x y z : NonnegativeReals,
(x - y) - z = x - (y + z).
Proof.
intros x y z.
apply plusNonnegativeReals_eqcompat_l with (y + z).
rewrite <- maxNonnegativeReals_minus_plus.
rewrite (iscomm_plusNonnegativeReals y).
rewrite <- isassoc_plusNonnegativeReals.
rewrite <- maxNonnegativeReals_minus_plus.
rewrite isrdistr_max_plusNonnegativeReals.
rewrite <- maxNonnegativeReals_minus_plus.
rewrite isassoc_maxNonnegativeReals.
apply maponpaths.
apply maxNonnegativeReals_carac_r.
now apply plusNonnegativeReals_le_r.
Qed.
Lemma iscomm_minusNonnegativeReals :
∏ x y z : NonnegativeReals,
x - y - z = x - z - y.
Proof.
intros x y z.
rewrite !isassoc_minusNonnegativeReals.
apply maponpaths.
now apply iscomm_plusNonnegativeReals.
Qed.
Lemma max_plusNonnegativeReals :
∏ x y : NonnegativeReals,
(0 < x → y = 0) →
maxNonnegativeReals x y = x + y.
Proof.
exact Dcuts_max_plus.
Qed.
half of a non-negative real numbers
Lemma double_halfNonnegativeReals :
∏ x : NonnegativeReals, x = (x / 2) + (x / 2).
Proof.
exact Dcuts_half_double.
Qed.
Lemma isdistr_plus_halfNonnegativeReals:
∏ x y : NonnegativeReals,
(x + y) / 2 = (x / 2) + (y / 2).
Proof.
exact isdistr_Dcuts_half_plus.
Qed.
Lemma ispositive_halfNonnegativeReals:
∏ x : NonnegativeReals,
(0 < x) ↔ (0 < x / 2).
Proof.
exact ispositive_Dcuts_half.
Qed.
Lemma NonnegativeReals_dense :
∏ x y : NonnegativeReals, x < y → ∃ r : NonnegativeRationals, x < NonnegativeRationals_to_NonnegativeReals r × NonnegativeRationals_to_NonnegativeReals r < y.
Proof.
intros x y.
apply hinhuniv ; intros q.
generalize (is_Dcuts_open y (pr1 q) (pr2 (pr2 q))).
apply hinhfun ; intros r.
∃ (pr1 r) ; split ; apply hinhpr.
- ∃ (pr1 q) ; split.
+ exact (pr1 (pr2 q)).
+ exact (pr2 (pr2 r)).
- ∃ (pr1 r) ; split.
+ exact (isirrefl_ltNonnegativeRationals _).
+ exact (pr1 (pr2 r)).
Qed.
Lemma NonnegativeReals_Archimedean :
isarchrig gtNonnegativeReals.
Proof.
set (H := isarchNonnegativeRationals).
repeat split.
- intros y1 y2 Hy.
generalize (NonnegativeReals_dense _ _ Hy).
apply hinhuniv ; clear Hy.
intros r2.
generalize (NonnegativeReals_dense _ _ (pr2 (pr2 r2))).
apply hinhuniv.
intros r1.
generalize (isarchrig_diff _ H _ _ (pr2 (NonnegativeRationals_to_NonnegativeReals_lt (pr1 r2) (pr1 r1)) (pr1 (pr2 r1)))).
apply hinhfun.
intros n.
∃ (pr1 n).
eapply istrans_le_lt_ltNonnegativeReals, istrans_lt_le_ltNonnegativeReals.
2: apply NonnegativeRationals_to_NonnegativeReals_lt, (pr2 n).
rewrite NonnegativeRationals_to_NonnegativeReals_plus, NonnegativeRationals_to_NonnegativeReals_mult, NonnegativeRationals_to_NonnegativeReals_nattorig.
apply plusNonnegativeReals_lecompat_r, multNonnegativeReals_lecompat_r'.
apply lt_leNonnegativeReals, (pr1 (pr2 r2)).
rewrite NonnegativeRationals_to_NonnegativeReals_mult, NonnegativeRationals_to_NonnegativeReals_nattorig.
apply multNonnegativeReals_lecompat_r'.
apply lt_leNonnegativeReals, (pr2 (pr2 r1)).
- intros x.
generalize (Dcuts_def_corr_finite _ (is_Dcuts_corr x)).
apply hinhuniv ; intros r.
generalize (isarchrig_gt _ H (pr1 r)).
apply hinhfun.
intros n.
∃ (pr1 n).
apply istrans_le_lt_ltNonnegativeReals with (NonnegativeRationals_to_NonnegativeReals (pr1 r)).
apply NonnegativeRationals_to_Dcuts_notin_le.
exact (pr2 r).
rewrite <- NonnegativeRationals_to_NonnegativeReals_nattorig.
apply NonnegativeRationals_to_NonnegativeReals_lt.
exact (pr2 n).
- intros x.
apply hinhpr.
∃ 1%nat.
apply istrans_lt_le_ltNonnegativeReals with 1.
apply ispositive_oneNonnegativeReals.
apply plusNonnegativeReals_le_l.
Qed.
Definition Cauchy_seq (u : nat → NonnegativeReals) : hProp
:= hProppair (∏ eps : NonnegativeReals,
0 < eps →
hexists
(λ N : nat,
∏ n m : nat, N ≤ n → N ≤ m → u n < u m + eps × u m < u n + eps))
(impred_isaprop _ (λ _, isapropimpl _ _ (pr2 _))).
Definition is_lim_seq (u : nat → NonnegativeReals) (l : NonnegativeReals) : hProp
:= hProppair (∏ eps : NonnegativeReals,
0 < eps →
hexists
(λ N : nat,
∏ n : nat, N ≤ n → u n < l + eps × l < u n + eps))
(impred_isaprop _ (λ _, isapropimpl _ _ (pr2 _))).
Definition Cauchy_lim_seq (u : nat → NonnegativeReals) (Cu : Cauchy_seq u) : NonnegativeReals
:= (Dcuts_lim_cauchy_seq u Cu).
Definition Cauchy_seq_impl_ex_lim_seq (u : nat → NonnegativeReals) (Cu : Cauchy_seq u) : is_lim_seq u (Cauchy_lim_seq u Cu)
:= (Dcuts_Cauchy_seq_impl_ex_lim_seq u Cu).
Additionals theorems and definitions about limits
Lemma is_lim_seq_unique_aux (u : nat → NonnegativeReals) (l l' : NonnegativeReals) :
is_lim_seq u l → is_lim_seq u l' → l < l' → empty.
Proof.
intros Hl Hl' Hlt.
assert (Hlt0 : 0 < l' - l).
{ now apply ispositive_minusNonnegativeReals. }
assert (Hlt0' : 0 < (l' - l) / 2).
{ now apply ispositive_Dcuts_half. }
generalize (Hl _ Hlt0') (Hl' _ Hlt0') ; clear Hl Hl'.
apply (hinhuniv2 (P := hProppair _ isapropempty)).
intros N M.
generalize (pr2 N (max (pr1 N) (pr1 M)) (max_le_l _ _)) ; intros Hn.
generalize (pr2 M (max (pr1 N) (pr1 M)) (max_le_r _ _)) ; intros Hm.
apply (isirrefl_Dcuts_lt_rel ((l + l') / 2)).
apply istrans_Dcuts_lt_rel with (u (max (pr1 N) (pr1 M))).
- apply_pr2 (plusNonnegativeReals_ltcompat_l ((l' - l) / 2)).
rewrite <- isdistr_Dcuts_half_plus.
rewrite (iscomm_plusNonnegativeReals l), isassoc_plusNonnegativeReals, (iscomm_plusNonnegativeReals l).
rewrite <- (minusNonnegativeReals_plus_r (l' - l) l' l), isdistr_Dcuts_half_plus, <- Dcuts_half_double.
exact (pr2 Hm).
now apply Dcuts_lt_le_rel.
reflexivity.
- pattern l' at 1;
rewrite (minusNonnegativeReals_plus_r (l' - l) l' l), (iscomm_plusNonnegativeReals _ l), <- isassoc_plusNonnegativeReals, !isdistr_Dcuts_half_plus, <- Dcuts_half_double.
exact (pr1 Hn).
now apply Dcuts_lt_le_rel.
reflexivity.
Qed.
Lemma is_lim_seq_unique (u : nat → NonnegativeReals) (l l' : NonnegativeReals) :
is_lim_seq u l → is_lim_seq u l' → l = l'.
Proof.
intros Hl Hl'.
apply istight_apNonnegativeReals.
unfold neg ;
apply sumofmaps.
- now apply (is_lim_seq_unique_aux u).
- now apply (is_lim_seq_unique_aux u).
Qed.
Lemma isaprop_ex_lim_seq :
∏ u : nat → NonnegativeReals, isaprop (∑ l : NonnegativeReals, is_lim_seq u l).
Proof.
intros u l l'.
apply (iscontrweqf (X := (pr1 l = pr1 l'))).
now apply invweq, total2_paths_hProp_equiv.
rewrite (is_lim_seq_unique _ _ _ (pr2 l) (pr2 l')).
apply iscontrloopsifisaset.
apply pr2.
Qed.
Definition ex_lim_seq (u : nat → NonnegativeReals) : hProp
:= hProppair (∑ l : NonnegativeReals, is_lim_seq u l) (isaprop_ex_lim_seq u).
Definition Lim_seq (u : nat → NonnegativeReals) (Lu : ex_lim_seq u) : NonnegativeReals
:= pr1 Lu.