Library UniMath.Induction.M.Uniqueness

Uniqueness of M-types

M-types are unique up to propositional equality.
Author: Langston Barrett (@siddharthist)

Require Import UniMath.Foundations.PartD.
Require Import UniMath.CategoryTheory.Categories.
Require Import UniMath.CategoryTheory.functor_categories.
Require Import UniMath.CategoryTheory.FunctorCoalgebras.
Require Import UniMath.CategoryTheory.categories.Types.
Require Import UniMath.Ktheory.Utilities.
Require Import UniMath.Induction.PolynomialFunctors.
Require Import UniMath.Induction.M.Core.

Section Uniqueness.

  Local Open Scope functions.
  Local Open Scope cat.

  Context (A : UU).
  Context (B : A UU).

Following the paper, we have X Y = Hom(X, Y)
  Local Notation F := (polynomial_functor A B).   Local Notation "F*" := (polynomial_functor_arr A B).
  Local Notation "X ⇒ Y" := (coalgebra_homo F X Y).

Since we can't use the standard categorical proof, we must re-prove that final coalgebras are unique up to isomorphism.
(Lemma 5 in Ahrens, Capriotti, and Spadotti)
We prove that their carriers (first projections) are isomorphic, and hence equal (by univalence).
This is standard categorical reasoning: each has exactly one arrow to the other, which, composing, gives an endormorphism. However, each has exactly one endomorphism, the identity map. Therefore, they are isomorphic.

  Lemma M_carriers_iso : X Y : M B, (coalgebra_ob _ X)
                                      (coalgebra_ob _ Y).
  Proof.
    intros X Y.

Get the coalgebra morphisms X → Y and Y → X via finality
    pose (X_mor_Y := iscontrpr1 (pr2 Y X)).
    pose (Y_mor_X := iscontrpr1 (pr2 X Y)).

    apply (weq_iso
             (mor_from_coalgebra_homo _ _ _ X_mor_Y)
             (mor_from_coalgebra_homo _ _ _ Y_mor_X)).
    - intro x.
      apply (@eqtohomot _ _ (Y_mor_X X_mor_Y) (idfun _)).
      refine (base_paths (coalgebra_homo_comp _ _ _ _ X_mor_Y Y_mor_X)
                         (coalgebra_homo_id F X) _).
      apply (proofirrelevancecontr (pr2 X X)).
    - intro y.
      apply (@eqtohomot _ _ (X_mor_Y Y_mor_X) (idfun _)).
      refine (base_paths (coalgebra_homo_comp _ _ _ _ Y_mor_X X_mor_Y)
                         (coalgebra_homo_id F Y) _).
      apply (proofirrelevancecontr (pr2 Y Y)).
  Defined.

Note the crucial use of univalence
  Lemma M_carriers_eq : X Y : M B, (coalgebra_ob _ X) = (coalgebra_ob _ Y).
  Proof.
    exact (fun X Yweqtopaths (M_carriers_iso X Y)).
  Defined.

Now we must prove that the coalgebra morphisms, when transported along the path M_carriers_eq, will be equal.
(≅⇒≡ in HoTT/M-types)

  Lemma M_coalg_eq : X Y : M B, M_coalgebra B X = M_coalgebra B Y.
  Proof.
    intros X Y.
    pose (π1eq := (M_carriers_eq X Y)).
    pose (f := pr1 ((pr2 Y) (M_coalgebra B X))).
    apply (total2_paths_f π1eq).

Some shorthands for items we'll use
    pose (is_final_X := pr2 X).
    pose (is_final_Y := pr2 Y).
    pose (θ := pr2 (pr1 X)).
    pose (ψ := pr2 (pr1 Y)).

substⁱ-lemma in HoTT/M-types
    assert (trans_fun : {X Y : UU} {F : UU UU} {f : X F X} {g : Y F Y}
                          (p : X = Y),
               ( (x : X), transportf F p (f x) = g (transportf (idfun UU) p x))
               transportf (λ X, X F X) p f = g).
    {
      intros ? ? ? ? ? p H.
      induction p.
      unfold transportf.
      apply funextfun.
      exact H.
    }

    apply trans_fun.
    intro x.

imap-subst in HoTT/M-types
    assert (arr_transport :
               {X Y : UU} (p : X = Y),
                F× (transportf (idfun _) p) = transportf F p).
    {
      intros ? ? p.
      induction p.
      reflexivity.
    }

    
In HoTT/M-types: lemma₁ : ∀ i x → subst (λ Z → Z i) π₁≡ x ≡ proj₁ f i x
    assert (lemma1 : x : pr1 (pr1 X), transportf (idfun UU) π1eq x = (pr1 f) x).
    {
      intro.
      refine (toforallpaths _ _ _ _ x0).
      refine ((weqpath_transport (M_carriers_iso _ Y)) @ _).
      reflexivity.
    }

    
lemma₂ in HoTT/M-types
    assert (lemma2 : transportf F π1eq = F× (pr1 f)).
    {
      refine (!(arr_transport _ _ π1eq) @ _).
      apply maponpaths.
      unfold π1eq, M_carriers_eq.
      refine ((weqpath_transport (M_carriers_iso _ _)) @ _).
      reflexivity.
    }

    refine (_ @ !(maponpaths ψ (lemma1 x))).
    refine (toforallpaths _ (transportf F π1eq) (F× (pr1 f)) lemma2 (θ x) @ _).

Now our goal is simply the condition that f is a coalgebra morphism
    apply (toforallpaths _ (F× (pr1 f) θ) (ψ pr1 f)).
    exact (pr2 f).
  Defined.

  Lemma isaprop_M : isaprop (M B).
    apply invproofirrelevance.
    intros X Y.
    apply subtypeEquality.
    - exact isaprop_is_final.
    - exact (M_coalg_eq X Y).
  Defined.
End Uniqueness.