Library UniMath.CategoryTheory.FunctorCoalgebras
***************************************************************
Contents:
- Category of coalgebras over an endofunctor.
- Dual of Lambek's lemma: if (A,α) is terminal coalgebra, α is an isomorphism.
Require Import UniMath.Foundations.Propositions.
Require Import UniMath.CategoryTheory.Categories.
Require Import UniMath.CategoryTheory.functor_categories.
Require Import UniMath.CategoryTheory.limits.terminal.
Local Open Scope cat.
Section Coalgebra_Definition.
Context {C : precategory} (F : functor C C).
Definition coalgebra : UU := ∑ X : C, X --> F X.
Definition coalgebra_ob (X : coalgebra) : C := pr1 X.
Local Coercion coalgebra_ob : coalgebra >-> ob.
Definition coalgebra_mor (X : coalgebra) : C ⟦X, F X ⟧ := pr2 X.
A homomorphism of F-coalgebras (F A, α : C ⟦A, F A⟧) and (F B, β : C ⟦B, F B⟧)
is a morphism f : C ⟦A, B⟧ s.t. the below diagram commutes.
f
A -----> B
| |
| α | β
| |
V V
F A ---> F B
F f
Definition is_coalgebra_homo {X Y : coalgebra} (f : C ⟦X, Y⟧) : UU
:= (coalgebra_mor X) · #F f = f · (coalgebra_mor Y).
Definition coalgebra_homo (X Y : coalgebra) := ∑ f : C ⟦X, Y⟧, is_coalgebra_homo f.
Definition isaset_coalgebra_homo {X Y : coalgebra} (hasHom : has_homsets C)
: isaset (coalgebra_homo X Y).
Proof.
apply (isofhleveltotal2 2).
- apply hasHom.
- intro f.
apply isasetaprop.
apply hasHom.
Defined.
Definition mor_from_coalgebra_homo (X Y : coalgebra) (f : coalgebra_homo X Y)
: C ⟦X, Y⟧ := pr1 f.
Coercion mor_from_coalgebra_homo : coalgebra_homo >-> precategory_morphisms.
Definition coalgebra_homo_eq (hasHom : has_homsets C) {X Y : coalgebra}
(f g : coalgebra_homo X Y) : (f : C ⟦X, Y⟧) = g ≃ f = g.
Proof.
apply invweq.
apply subtypeInjectivity.
intro. apply hasHom.
Defined.
Lemma coalgebra_homo_commutes {X Y : coalgebra} (f : coalgebra_homo X Y)
: (coalgebra_mor X) · #F f = f · (coalgebra_mor Y).
Proof.
exact (pr2 f).
Defined.
Definition coalgebra_homo_id (X : coalgebra) : coalgebra_homo X X.
Proof.
∃ (identity _).
unfold is_coalgebra_homo.
rewrite id_left.
rewrite functor_id.
rewrite id_right.
apply idpath.
Defined.
Definition coalgebra_homo_comp (X Y Z : coalgebra) (f : coalgebra_homo X Y)
(g : coalgebra_homo Y Z) : coalgebra_homo X Z.
Proof.
∃ (f · g).
unfold is_coalgebra_homo.
rewrite functor_comp.
rewrite assoc.
rewrite coalgebra_homo_commutes.
rewrite <- assoc.
rewrite coalgebra_homo_commutes.
rewrite assoc.
apply idpath.
Defined.
Definition CoAlg_precategory_ob_mor : precategory_ob_mor :=
precategory_ob_mor_pair coalgebra coalgebra_homo.
Definition CoAlg_precategory_data: precategory_data :=
precategory_data_pair CoAlg_precategory_ob_mor
coalgebra_homo_id
coalgebra_homo_comp.
Lemma CoAlg_is_precategory (hasHom : has_homsets C)
: is_precategory CoAlg_precategory_data.
Proof.
split.
- split.
+ intros. apply coalgebra_homo_eq.
× apply hasHom.
× apply id_left.
+ intros. apply coalgebra_homo_eq.
× apply hasHom.
× apply id_right.
- { split.
- intros.
apply coalgebra_homo_eq.
+ apply hasHom.
+ apply assoc.
- intros.
apply coalgebra_homo_eq.
+ apply hasHom.
+ apply assoc'. }
Defined.
Definition CoAlg_precategory (hasHom : has_homsets C) : precategory
:= mk_precategory CoAlg_precategory_data
(CoAlg_is_precategory hasHom).
Lemma has_homsets_coalgebra (hasHom : has_homsets C)
: has_homsets (CoAlg_precategory hasHom).
Proof.
intros f g.
apply isaset_coalgebra_homo.
exact hasHom.
Defined.
End Coalgebra_Definition.
Section Lambek_dual.
Dual of Lambeks Lemma : If (A,α) is terminal F-coalgebra, then α is an iso
Context (C : precategory) (hasHomC : has_homsets C)
(F : functor C C) (X : coalgebra F).
Local Notation F_CoAlg := (CoAlg_precategory F hasHomC).
Context (isTerminalX : isTerminal F_CoAlg X).
Definition TerminalX : Terminal F_CoAlg := mk_Terminal _ isTerminalX.
Local Notation α := (coalgebra_mor _ (TerminalObject TerminalX)).
Local Notation A := (coalgebra_ob _ (TerminalObject TerminalX)).
FX := (FA,Fα) is also an F-coalgebra
By terminality there is an arrow α' : FA → A, s.t.:
α'
FA ------> A
| |
| Fα | α
V V
FFA ------> FA
Fα'
commutes
Definition f : F_CoAlg ⟦FX, TerminalX⟧ := (@TerminalArrow F_CoAlg TerminalX FX).
Definition α' : C ⟦F A, A⟧ := mor_from_coalgebra_homo F FX X f.
Definition αα'_mor : coalgebra_homo F X X.
Proof.
∃ (α · α').
unfold is_coalgebra_homo.
rewrite <- assoc.
apply cancel_precomposition.
rewrite functor_comp.
apply (coalgebra_homo_commutes F f).
Defined.
Definition αα'_idA : α · α' = identity A
:= maponpaths pr1 (TerminalEndo_is_identity (T:=TerminalX) αα'_mor).
Lemma α'α_idFA : α' · α = identity (F A).
Proof.
rewrite <- functor_id.
rewrite <- αα'_idA.
rewrite functor_comp.
unfold α'.
apply pathsinv0.
apply (coalgebra_homo_commutes F f).
Defined.
Lemma terminalcoalgebra_isiso : is_iso α.
Proof.
apply (is_iso_qinv α α').
split.
- exact αα'_idA.
- exact α'α_idFA.
Defined.
Definition terminalcoalgebra_iso : iso A (F A) := isopair α terminalcoalgebra_isiso.
End Lambek_dual.