Library UniMath.CategoryTheory.limits.FinOrdProducts
A direct definition of finite ordered products by using products
Require Import UniMath.Foundations.PartD.
Require Import UniMath.Foundations.Propositions.
Require Import UniMath.Foundations.Sets.
Require Import UniMath.Combinatorics.StandardFiniteSets.
Require Import UniMath.CategoryTheory.total2_paths.
Require Import UniMath.CategoryTheory.Categories.
Require Import UniMath.CategoryTheory.ProductCategory.
Require Import UniMath.CategoryTheory.limits.products.
Require Import UniMath.CategoryTheory.limits.binproducts.
Require Import UniMath.CategoryTheory.limits.terminal.
Local Open Scope cat.
Require Import UniMath.Foundations.Propositions.
Require Import UniMath.Foundations.Sets.
Require Import UniMath.Combinatorics.StandardFiniteSets.
Require Import UniMath.CategoryTheory.total2_paths.
Require Import UniMath.CategoryTheory.Categories.
Require Import UniMath.CategoryTheory.ProductCategory.
Require Import UniMath.CategoryTheory.limits.products.
Require Import UniMath.CategoryTheory.limits.binproducts.
Require Import UniMath.CategoryTheory.limits.terminal.
Local Open Scope cat.
Definition of finite ordered products.
Section def_FinOrdProducts.
Variable C : precategory.
Definition FinOrdProducts : UU :=
∏ (n : nat) (a : stn n → C), Product (stn n) C a.
Definition hasFinOrdProducts : UU :=
∏ (n : nat) (a : stn n → C), ∥ Product (stn n) C a ∥.
End def_FinOrdProducts.
Variable C : precategory.
Definition FinOrdProducts : UU :=
∏ (n : nat) (a : stn n → C), Product (stn n) C a.
Definition hasFinOrdProducts : UU :=
∏ (n : nat) (a : stn n → C), ∥ Product (stn n) C a ∥.
End def_FinOrdProducts.
Construction of FinOrdProducts from Terminal and BinProducts.
Case n = 0 of the theorem.
Lemma TerminalToProduct (T : Terminal C):
∏ (a : stn 0 → C), Product (stn 0) C a.
Proof.
intros a.
use (mk_Product _ _ _ T
(λ i : stn 0, fromempty (weqstn0toempty i))).
use (mk_isProduct _ _ hs).
intros c g. use unique_exists.
apply (TerminalArrow _ c).
intros i. apply (fromempty (weqstn0toempty i)).
intros y. apply impred_isaprop. intros t. apply hs.
intros y X. apply TerminalArrowEq.
Defined.
∏ (a : stn 0 → C), Product (stn 0) C a.
Proof.
intros a.
use (mk_Product _ _ _ T
(λ i : stn 0, fromempty (weqstn0toempty i))).
use (mk_isProduct _ _ hs).
intros c g. use unique_exists.
apply (TerminalArrow _ c).
intros i. apply (fromempty (weqstn0toempty i)).
intros y. apply impred_isaprop. intros t. apply hs.
intros y X. apply TerminalArrowEq.
Defined.
Case n = 1 of the theorem.
Lemma identity_to_product:
∏ (a : stn 1 → C), Product (stn 1) C a.
Proof.
intros a.
set (stn1ob := invweq(weqstn1tounit) tt).
use (mk_Product _ _ _ (a stn1ob)).
intros i. exact (idtoiso ((maponpaths a (isconnectedstn1 stn1ob i)))).
use (mk_isProduct _ _ hs).
intros c g.
use (unique_exists).
exact (g stn1ob).
intros i. rewrite <- (isconnectedstn1 stn1ob i). apply id_right.
intros y. apply impred_isaprop. intros t. apply hs.
intros y X. rewrite <- (X stn1ob). apply pathsinv0. apply id_right.
Defined.
∏ (a : stn 1 → C), Product (stn 1) C a.
Proof.
intros a.
set (stn1ob := invweq(weqstn1tounit) tt).
use (mk_Product _ _ _ (a stn1ob)).
intros i. exact (idtoiso ((maponpaths a (isconnectedstn1 stn1ob i)))).
use (mk_isProduct _ _ hs).
intros c g.
use (unique_exists).
exact (g stn1ob).
intros i. rewrite <- (isconnectedstn1 stn1ob i). apply id_right.
intros y. apply impred_isaprop. intros t. apply hs.
intros y X. rewrite <- (X stn1ob). apply pathsinv0. apply id_right.
Defined.
Finite ordered products from terminal and binary products
Theorem FinOrdProducts_from_Terminal_and_BinProducts :
Terminal C → BinProducts C → FinOrdProducts C.
Proof.
intros T BinProds. unfold FinOrdProducts. intros n. induction n as [|n IHn].
apply (TerminalToProduct T).
intros a.
set (a1 := λ (i : stn n), a (dni_lastelement i)).
set (cone1 := IHn a1).
set (a2 := (λ _ : stn 1, a lastelement)).
set (cone2 := identity_to_product a2). set (cone1Pr := ProductPr _ _ cone1).
set (cone2Pr := ProductPr _ _ cone2).
set (Bin := BinProds (ProductObject (stn n) C cone1)
(ProductObject (stn 1) C cone2)).
set (p1 := BinProductPr1 _ Bin).
set (p2 := BinProductPr2 _ Bin).
set (m1 := λ i1 : stn n, p1 · (cone1Pr i1)).
set (m2 := λ i2 : stn 1, p2 · (cone2Pr i2)).
set (BinOb := BinProductObject _ Bin).
fold BinOb in p1, p2, m1, m2.
use (mk_Product (stn (S n)) C a BinOb _).
intros i. induction (natlehchoice4 (pr1 i) _ (pr2 i)) as [a0|b].
exact (m1 (stnpair n (pr1 i) a0) ·
idtoiso (! maponpaths a (dni_lastelement_eq n i a0))).
exact (m2 (invweq(weqstn1tounit) tt) ·
idtoiso (! maponpaths a (lastelement_eq n i b))).
use (mk_isProduct _ _ hs).
intros c g.
set (g1 := λ i : stn n, g(dni_lastelement i)).
set (ar1 := ProductArrow _ _ cone1 g1). fold ar1.
set (com1 := BinProductPr1Commutes _ _ _ Bin c ar1 (g lastelement)).
set (com2 := BinProductPr2Commutes _ _ _ Bin c ar1 (g lastelement)).
set (com3 := ProductPrCommutes _ _ _ cone1 _ g1).
set (com4 := ProductPrCommutes _ _ _ cone2 _
(λ _ : stn 1, g lastelement)).
use (unique_exists).
use (BinProductArrow _ Bin).
use (ProductArrow _ _ cone1). intros i. exact (g (dni_lastelement i)).
use (ProductArrow _ _ cone2). intros i. exact (g lastelement).
intros i. unfold coprod_rect. induction (natlehchoice4 (pr1 i) n (pr2 i)) as [a0|b].
rewrite (dni_lastelement_eq n i a0). repeat rewrite assoc.
apply remove_id_right. apply idpath.
unfold m1. unfold p1. rewrite assoc. fold g1. fold ar1.
use (pathscomp0 (maponpaths (λ f : _, f · cone1Pr (stnpair n (pr1 i) a0))
com1)).
fold ar1 in com3. rewrite com3. unfold g1. apply idpath.
rewrite (lastelement_eq n i b). repeat rewrite assoc.
apply remove_id_right. apply idpath.
unfold m2. unfold p2. rewrite assoc. fold g1. fold ar1.
use (pathscomp0 (maponpaths (λ f : _, f · cone2Pr lastelement) com2)).
rewrite com4. apply idpath.
intros y. apply impred_isaprop. intros t. apply hs.
unfold coprod_rect. intros k X.
apply BinProductArrowUnique.
apply ProductArrowUnique.
intros i. rewrite <- (X (dni_lastelement i)). rewrite <- assoc.
apply cancel_precomposition.
induction (natlehchoice4 (pr1 (dni_lastelement i)) n
(pr2 (dni_lastelement i))) as [a0|b].
unfold m1. rewrite <- assoc. unfold p1.
apply cancel_precomposition.
unfold cone1Pr. apply pathsinv0.
set (e := dni_lastelement_is_inj (dni_lastelement_eq n (dni_lastelement i)
a0)).
use (pathscomp0 _ (ProductPr_idtoiso (stn n) C (a ∘ dni_lastelement)%functions cone1
(!e))).
rewrite maponpathsinv0.
apply cancel_precomposition.
apply maponpaths. apply maponpaths. apply maponpaths.
rewrite <- (maponpathscomp _ a).
apply maponpaths. apply isasetstn.
apply fromempty. induction i as [i i'].
cbn in b. induction (!b).
apply (isirreflnatlth _ i').
apply ProductArrowUnique.
intros i. rewrite <- (X lastelement). rewrite <- assoc.
apply cancel_precomposition.
induction (natlehchoice4 (pr1 lastelement) n (pr2 lastelement)) as [a0|b].
apply fromempty. cbn in a0. apply (isirreflnatlth _ a0).
apply pathsinv0. unfold m2. rewrite <- assoc. unfold p2.
apply cancel_precomposition. unfold cone2Pr.
set (e := isconnectedstn1 i (invweq(weqstn1tounit) tt)).
use (pathscomp0 _ (ProductPr_idtoiso (stn 1) C (λ _ : _, a lastelement)
cone2 (!e))).
rewrite maponpathsinv0.
apply cancel_precomposition.
apply maponpaths. apply maponpaths. apply maponpaths.
fold (@funcomp (stn 1) _ _ (λ _ : stn 1, lastelement) a).
rewrite <- (maponpathscomp (λ _ : stn 1, lastelement) a).
apply maponpaths. apply isasetstn.
Defined.
End FinOrdProduct_criteria.
Terminal C → BinProducts C → FinOrdProducts C.
Proof.
intros T BinProds. unfold FinOrdProducts. intros n. induction n as [|n IHn].
apply (TerminalToProduct T).
intros a.
set (a1 := λ (i : stn n), a (dni_lastelement i)).
set (cone1 := IHn a1).
set (a2 := (λ _ : stn 1, a lastelement)).
set (cone2 := identity_to_product a2). set (cone1Pr := ProductPr _ _ cone1).
set (cone2Pr := ProductPr _ _ cone2).
set (Bin := BinProds (ProductObject (stn n) C cone1)
(ProductObject (stn 1) C cone2)).
set (p1 := BinProductPr1 _ Bin).
set (p2 := BinProductPr2 _ Bin).
set (m1 := λ i1 : stn n, p1 · (cone1Pr i1)).
set (m2 := λ i2 : stn 1, p2 · (cone2Pr i2)).
set (BinOb := BinProductObject _ Bin).
fold BinOb in p1, p2, m1, m2.
use (mk_Product (stn (S n)) C a BinOb _).
intros i. induction (natlehchoice4 (pr1 i) _ (pr2 i)) as [a0|b].
exact (m1 (stnpair n (pr1 i) a0) ·
idtoiso (! maponpaths a (dni_lastelement_eq n i a0))).
exact (m2 (invweq(weqstn1tounit) tt) ·
idtoiso (! maponpaths a (lastelement_eq n i b))).
use (mk_isProduct _ _ hs).
intros c g.
set (g1 := λ i : stn n, g(dni_lastelement i)).
set (ar1 := ProductArrow _ _ cone1 g1). fold ar1.
set (com1 := BinProductPr1Commutes _ _ _ Bin c ar1 (g lastelement)).
set (com2 := BinProductPr2Commutes _ _ _ Bin c ar1 (g lastelement)).
set (com3 := ProductPrCommutes _ _ _ cone1 _ g1).
set (com4 := ProductPrCommutes _ _ _ cone2 _
(λ _ : stn 1, g lastelement)).
use (unique_exists).
use (BinProductArrow _ Bin).
use (ProductArrow _ _ cone1). intros i. exact (g (dni_lastelement i)).
use (ProductArrow _ _ cone2). intros i. exact (g lastelement).
intros i. unfold coprod_rect. induction (natlehchoice4 (pr1 i) n (pr2 i)) as [a0|b].
rewrite (dni_lastelement_eq n i a0). repeat rewrite assoc.
apply remove_id_right. apply idpath.
unfold m1. unfold p1. rewrite assoc. fold g1. fold ar1.
use (pathscomp0 (maponpaths (λ f : _, f · cone1Pr (stnpair n (pr1 i) a0))
com1)).
fold ar1 in com3. rewrite com3. unfold g1. apply idpath.
rewrite (lastelement_eq n i b). repeat rewrite assoc.
apply remove_id_right. apply idpath.
unfold m2. unfold p2. rewrite assoc. fold g1. fold ar1.
use (pathscomp0 (maponpaths (λ f : _, f · cone2Pr lastelement) com2)).
rewrite com4. apply idpath.
intros y. apply impred_isaprop. intros t. apply hs.
unfold coprod_rect. intros k X.
apply BinProductArrowUnique.
apply ProductArrowUnique.
intros i. rewrite <- (X (dni_lastelement i)). rewrite <- assoc.
apply cancel_precomposition.
induction (natlehchoice4 (pr1 (dni_lastelement i)) n
(pr2 (dni_lastelement i))) as [a0|b].
unfold m1. rewrite <- assoc. unfold p1.
apply cancel_precomposition.
unfold cone1Pr. apply pathsinv0.
set (e := dni_lastelement_is_inj (dni_lastelement_eq n (dni_lastelement i)
a0)).
use (pathscomp0 _ (ProductPr_idtoiso (stn n) C (a ∘ dni_lastelement)%functions cone1
(!e))).
rewrite maponpathsinv0.
apply cancel_precomposition.
apply maponpaths. apply maponpaths. apply maponpaths.
rewrite <- (maponpathscomp _ a).
apply maponpaths. apply isasetstn.
apply fromempty. induction i as [i i'].
cbn in b. induction (!b).
apply (isirreflnatlth _ i').
apply ProductArrowUnique.
intros i. rewrite <- (X lastelement). rewrite <- assoc.
apply cancel_precomposition.
induction (natlehchoice4 (pr1 lastelement) n (pr2 lastelement)) as [a0|b].
apply fromempty. cbn in a0. apply (isirreflnatlth _ a0).
apply pathsinv0. unfold m2. rewrite <- assoc. unfold p2.
apply cancel_precomposition. unfold cone2Pr.
set (e := isconnectedstn1 i (invweq(weqstn1tounit) tt)).
use (pathscomp0 _ (ProductPr_idtoiso (stn 1) C (λ _ : _, a lastelement)
cone2 (!e))).
rewrite maponpathsinv0.
apply cancel_precomposition.
apply maponpaths. apply maponpaths. apply maponpaths.
fold (@funcomp (stn 1) _ _ (λ _ : stn 1, lastelement) a).
rewrite <- (maponpathscomp (λ _ : stn 1, lastelement) a).
apply maponpaths. apply isasetstn.
Defined.
End FinOrdProduct_criteria.