Library UniMath.CategoryTheory.limits.coequalizers

Direct implementation of coequalizers together with:
Written by Tomi Pannila
Require Import UniMath.Foundations.PartD.
Require Import UniMath.Foundations.Propositions.
Require Import UniMath.Foundations.Sets.

Require Import UniMath.CategoryTheory.Core.Categories.
Require Import UniMath.CategoryTheory.Core.Isos.
Local Open Scope cat.
Require Import UniMath.CategoryTheory.Epis.

Section def_coequalizers.

  Context {C : precategory}.

Definition and construction of isCoequalizer.
  Definition isCoequalizer {x y z : C} (f g : x --> y) (e : y --> z)
             (H : f · e = g · e) : UU :=
     (w : C) (h : y --> w) (H : f · h = g · h),
      ∃! φ : z --> w, e · φ = h.

  Definition make_isCoequalizer {y z w : C} (f g : y --> z) (e : z --> w)
             (H : f · e = g · e) :
    ( (w0 : C) (h : z --> w0) (H' : f · h = g · h),
        ∃! ψ : w --> w0, e · ψ = h) isCoequalizer f g e H.
  Proof.
    intros X. unfold isCoequalizer. exact X.
  Defined.

  Lemma isaprop_isCoequalizer {y z w : C} (f g : y --> z) (e : z --> w)
        (H : f · e = g · e) :
    isaprop (isCoequalizer f g e H).
  Proof.
    repeat (apply impred; intro).
    apply isapropiscontr.
  Defined.

  Lemma isCoequalizer_path {hs : has_homsets C} {x y z : C} {f g : x --> y} {e : y --> z}
        {H H' : f · e = g · e} (iC : isCoequalizer f g e H) :
    isCoequalizer f g e H'.
  Proof.
    use make_isCoequalizer.
    intros w0 h H'0.
    use unique_exists.
    - exact (pr1 (pr1 (iC w0 h H'0))).
    - exact (pr2 (pr1 (iC w0 h H'0))).
    - intros y0. apply hs.
    - intros y0 X. exact (base_paths _ _ (pr2 (iC w0 h H'0) (tpair _ y0 X))).
  Defined.

Proves that the arrow from the coequalizer object with the right commutativity property is unique.
  Lemma isCoequalizerOutUnique {y z w: C} (f g : y --> z) (e : z --> w)
        (H : f · e = g · e) (E : isCoequalizer f g e H)
        (w0 : C) (h : z --> w0) (H' : f · h = g · h)
        (φ : w --> w0) (H'' : e · φ = h) :
    φ = (pr1 (pr1 (E w0 h H'))).
  Proof.
    set (T := tpair (fun ψ : w --> w0e · ψ = h) φ H'').
    set (T' := pr2 (E w0 h H') T).
    apply (base_paths _ _ T').
  Defined.

Definition and construction of coequalizers.
  Definition Coequalizer {y z : C} (f g : y --> z) : UU :=
     e : ( w : C, z --> w),
          (∑ H : f · (pr2 e) = g · (pr2 e), isCoequalizer f g (pr2 e) H).

  Definition make_Coequalizer {y z w : C} (f g : y --> z) (e : z --> w)
             (H : f · e = g · e) (isE : isCoequalizer f g e H) :
    Coequalizer f g.
  Proof.
    use tpair.
    - use tpair.
      + apply w.
      + apply e.
    - simpl. exact (tpair _ H isE).
  Defined.

Coequalizers in precategories.
  Definition Coequalizers := (y z : C) (f g : y --> z),
      Coequalizer f g.

  Definition hasCoequalizers := (y z : C) (f g : y --> z),
      ishinh (Coequalizer f g).

Returns the coequalizer object.
  Definition CoequalizerObject {y z : C} {f g : y --> z} (E : Coequalizer f g) :
    C := pr1 (pr1 E).
  Coercion CoequalizerObject : Coequalizer >-> ob.

Returns the coequalizer arrow.
  Definition CoequalizerArrow {y z : C} {f g : y --> z} (E : Coequalizer f g) :
    Cz, E := pr2 (pr1 E).

The equality on morphisms that coequalizers must satisfy.
  Definition CoequalizerEqAr {y z : C} {f g : y --> z} (E : Coequalizer f g) :
    f · CoequalizerArrow E = g · CoequalizerArrow E := pr1 (pr2 E).

Returns the property isCoequalizer from Coequalizer.
  Definition isCoequalizer_Coequalizer {y z : C} {f g : y --> z}
             (E : Coequalizer f g) :
    isCoequalizer f g (CoequalizerArrow E) (CoequalizerEqAr E) := pr2 (pr2 E).

Every morphism which satisfy the coequalizer equality on morphism factors uniquely through the CoequalizerArrow.
  Definition CoequalizerOut {y z : C} {f g : y --> z} (E : Coequalizer f g)
             (w : C) (h : z --> w) (H : f · h = g · h) :
    CE, w := pr1 (pr1 (isCoequalizer_Coequalizer E w h H)).

  Lemma CoequalizerCommutes {y z : C} {f g : y --> z} (E : Coequalizer f g)
        (w : C) (h : z --> w) (H : f · h = g · h) :
    (CoequalizerArrow E) · (CoequalizerOut E w h H) = h.
  Proof.
    exact (pr2 (pr1 ((isCoequalizer_Coequalizer E) w h H))).
  Defined.

  Lemma isCoequalizerOutsEq {y z w: C} {f g : y --> z} {e : z --> w}
        {H : f · e = g · e} (E : isCoequalizer f g e H)
        {w0 : C} (φ1 φ2: w --> w0) (H' : e · φ1 = e · φ2) : φ1 = φ2.
  Proof.
    assert (H'1 : f · e · φ1 = g · e · φ1).
    rewrite H. apply idpath.
    set (E' := make_Coequalizer _ _ _ _ E).
    repeat rewrite <- assoc in H'1.
    set (E'ar := CoequalizerOut E' w0 (e · φ1) H'1).
    intermediate_path E'ar.
    apply isCoequalizerOutUnique. apply idpath.
    apply pathsinv0. apply isCoequalizerOutUnique. apply pathsinv0. apply H'.
  Defined.

  Lemma CoequalizerOutsEq {y z: C} {f g : y --> z} (E : Coequalizer f g)
        {w : C} (φ1 φ2: CE, w)
        (H' : (CoequalizerArrow E) · φ1 = (CoequalizerArrow E) · φ2) :
    φ1 = φ2.
  Proof.
    apply (isCoequalizerOutsEq (isCoequalizer_Coequalizer E) _ _ H').
  Defined.

  Lemma CoequalizerOutComp {y z : C} {f g : y --> z} (CE : Coequalizer f g) {w w' : C}
        (h1 : z --> w) (h2 : w --> w')
        (H1 : f · (h1 · h2) = g · (h1 · h2)) (H2 : f · h1 = g · h1) :
    CoequalizerOut CE w' (h1 · h2) H1 = CoequalizerOut CE w h1 H2 · h2.
  Proof.
    use CoequalizerOutsEq. rewrite CoequalizerCommutes. rewrite assoc.
    rewrite CoequalizerCommutes. apply idpath.
  Qed.

Morphisms between coequalizer objects with the right commutativity equalities.
  Definition identity_is_CoequalizerOut {y z : C} {f g : y --> z}
             (E : Coequalizer f g) :
     φ : CE, E, (CoequalizerArrow E) · φ = (CoequalizerArrow E).
  Proof.
     (identity E).
    apply id_right.
  Defined.

  Lemma CoequalizerEndo_is_identity {y z : C} {f g : y --> z}
        {E : Coequalizer f g} (φ : CE, E)
        (H : (CoequalizerArrow E) · φ = CoequalizerArrow E) :
    identity E = φ.
  Proof.
    set (H1 := tpair ((fun φ' : CE, E_ · φ' = _)) φ H).
    assert (H2 : identity_is_CoequalizerOut E = H1).
    - apply proofirrelevance.
      apply isapropifcontr.
      apply (isCoequalizer_Coequalizer E).
      apply CoequalizerEqAr.
    - apply (base_paths _ _ H2).
  Defined.

  Definition from_Coequalizer_to_Coequalizer {y z : C} {f g : y --> z}
             (E E': Coequalizer f g) : CE, E'.
  Proof.
    apply (CoequalizerOut E E' (CoequalizerArrow E')).
    apply CoequalizerEqAr.
  Defined.

  Lemma are_inverses_from_Coequalizer_to_Coequalizer {y z : C} {f g : y --> z}
        {E E': Coequalizer f g} :
    is_inverse_in_precat (from_Coequalizer_to_Coequalizer E E')
                         (from_Coequalizer_to_Coequalizer E' E).
  Proof.
    split; apply pathsinv0; use CoequalizerEndo_is_identity;
    rewrite assoc; unfold from_Coequalizer_to_Coequalizer;
      repeat rewrite CoequalizerCommutes; apply idpath.
  Defined.

  Lemma isiso_from_Coequalizer_to_Coequalizer {y z : C} {f g : y --> z}
        (E E' : Coequalizer f g) :
    is_iso (from_Coequalizer_to_Coequalizer E E').
  Proof.
    apply (is_iso_qinv _ (from_Coequalizer_to_Coequalizer E' E)).
    apply are_inverses_from_Coequalizer_to_Coequalizer.
  Defined.

  Definition iso_from_Coequalizer_to_Coequalizer {y z : C} {f g : y --> z}
             (E E' : Coequalizer f g) : iso E E' :=
    tpair _ _ (isiso_from_Coequalizer_to_Coequalizer E E').

We prove that CoequalizerArrow is an epi.
  Lemma CoequalizerArrowisEpi {y z : C} {f g : y --> z} (E : Coequalizer f g ) :
    isEpi (CoequalizerArrow E).
  Proof.
    apply make_isEpi.
    intros z0 g0 h X.
    apply (CoequalizerOutsEq E).
    apply X.
  Qed.

  Lemma CoequalizerArrowEpi {y z : C} {f g : y --> z} (E : Coequalizer f g ) :
    Epi _ z E.
  Proof.
    exact (make_Epi C (CoequalizerArrow E) (CoequalizerArrowisEpi E)).
  Defined.

End def_coequalizers.

Make the C not implicit for Coequalizers
Arguments Coequalizers : clear implicits.