Library UniMath.CategoryTheory.category_binops
Require Import UniMath.Foundations.PartD.
Require Import UniMath.Foundations.Propositions.
Require Import UniMath.Foundations.Sets.
Require Import UniMath.Foundations.UnivalenceAxiom.
Require Import UniMath.Algebra.BinaryOperations.
Require Import UniMath.CategoryTheory.Core.Categories.
Require Import UniMath.CategoryTheory.Core.Isos.
Require Import UniMath.CategoryTheory.Core.Univalence.
Local Open Scope cat.
Require Import UniMath.CategoryTheory.Core.Functors.
Section BINOPS_precategory.
Definition binops_fun_space (A B : setwithbinop) : hSet :=
make_hSet _ (isasetbinopfun A B).
Definition binops_precategory_ob_mor : precategory_ob_mor :=
tpair (λ ob : UU, ob → ob → UU) setwithbinop
(λ A B : setwithbinop, binops_fun_space A B).
Definition idbinopfun (A : setwithbinop) : binopfun A A.
Proof.
use make_binopfun. intros a. exact a.
intros a a'.
apply idpath.
Defined.
Definition idbinopfun_remove_left (A B : setwithbinop) (f : binopfun A B) :
binopfuncomp (idbinopfun A) f = f.
Proof.
unfold binopfuncomp. unfold idbinopfun.
use total2_paths_f. cbn. unfold funcomp. apply maponpaths.
apply idpath. apply proofirrelevance. apply isapropisbinopfun.
Defined.
Definition idbinopfun_remove_right (A B : setwithbinop) (f : binopfun A B) :
binopfuncomp f (idbinopfun B) = f.
Proof.
unfold binopfuncomp. unfold idbinopfun.
use total2_paths_f. cbn. unfold funcomp. apply maponpaths.
apply idpath. apply proofirrelevance. apply isapropisbinopfun.
Defined.
Definition binopfuncomp_assoc (A B C D : setwithbinop) (f : binopfun A B)
(g : binopfun B C) (h : binopfun C D) :
binopfuncomp (binopfuncomp f g) h = binopfuncomp f (binopfuncomp g h).
Proof.
unfold binopfuncomp. apply maponpaths.
apply isapropisbinopfun.
Defined.
Definition binop_precategory_data : precategory_data :=
make_precategory_data binops_precategory_ob_mor
(λ (A : setwithbinop), idbinopfun A )
(fun (A B C : setwithbinop) (f : binopfun A B)
(g : binopfun B C) ⇒ binopfuncomp f g).
Lemma is_precategory_binop_precategory_data :
is_precategory binop_precategory_data.
Proof.
repeat split; cbn.
intros a b f. apply idbinopfun_remove_left.
intros a b f. apply idbinopfun_remove_right.
intros a b c d f g h. apply pathsinv0.
apply (binopfuncomp_assoc a b c d f g h).
intros a b c d f g h.
apply (binopfuncomp_assoc a b c d f g h).
Defined.
Definition binop_precategory : precategory :=
tpair _ _ is_precategory_binop_precategory_data.
Local Notation BINOP := binop_precategory.
Lemma has_homsets_BINOP : has_homsets BINOP.
Proof. intros a b; apply isasetbinopfun. Qed.
End BINOPS_precategory.
Notation BINOP := binop_precategory.
Section BINOP_category.
Require Import UniMath.Foundations.Propositions.
Require Import UniMath.Foundations.Sets.
Require Import UniMath.Foundations.UnivalenceAxiom.
Require Import UniMath.Algebra.BinaryOperations.
Require Import UniMath.CategoryTheory.Core.Categories.
Require Import UniMath.CategoryTheory.Core.Isos.
Require Import UniMath.CategoryTheory.Core.Univalence.
Local Open Scope cat.
Require Import UniMath.CategoryTheory.Core.Functors.
Section BINOPS_precategory.
Definition binops_fun_space (A B : setwithbinop) : hSet :=
make_hSet _ (isasetbinopfun A B).
Definition binops_precategory_ob_mor : precategory_ob_mor :=
tpair (λ ob : UU, ob → ob → UU) setwithbinop
(λ A B : setwithbinop, binops_fun_space A B).
Definition idbinopfun (A : setwithbinop) : binopfun A A.
Proof.
use make_binopfun. intros a. exact a.
intros a a'.
apply idpath.
Defined.
Definition idbinopfun_remove_left (A B : setwithbinop) (f : binopfun A B) :
binopfuncomp (idbinopfun A) f = f.
Proof.
unfold binopfuncomp. unfold idbinopfun.
use total2_paths_f. cbn. unfold funcomp. apply maponpaths.
apply idpath. apply proofirrelevance. apply isapropisbinopfun.
Defined.
Definition idbinopfun_remove_right (A B : setwithbinop) (f : binopfun A B) :
binopfuncomp f (idbinopfun B) = f.
Proof.
unfold binopfuncomp. unfold idbinopfun.
use total2_paths_f. cbn. unfold funcomp. apply maponpaths.
apply idpath. apply proofirrelevance. apply isapropisbinopfun.
Defined.
Definition binopfuncomp_assoc (A B C D : setwithbinop) (f : binopfun A B)
(g : binopfun B C) (h : binopfun C D) :
binopfuncomp (binopfuncomp f g) h = binopfuncomp f (binopfuncomp g h).
Proof.
unfold binopfuncomp. apply maponpaths.
apply isapropisbinopfun.
Defined.
Definition binop_precategory_data : precategory_data :=
make_precategory_data binops_precategory_ob_mor
(λ (A : setwithbinop), idbinopfun A )
(fun (A B C : setwithbinop) (f : binopfun A B)
(g : binopfun B C) ⇒ binopfuncomp f g).
Lemma is_precategory_binop_precategory_data :
is_precategory binop_precategory_data.
Proof.
repeat split; cbn.
intros a b f. apply idbinopfun_remove_left.
intros a b f. apply idbinopfun_remove_right.
intros a b c d f g h. apply pathsinv0.
apply (binopfuncomp_assoc a b c d f g h).
intros a b c d f g h.
apply (binopfuncomp_assoc a b c d f g h).
Defined.
Definition binop_precategory : precategory :=
tpair _ _ is_precategory_binop_precategory_data.
Local Notation BINOP := binop_precategory.
Lemma has_homsets_BINOP : has_homsets BINOP.
Proof. intros a b; apply isasetbinopfun. Qed.
End BINOPS_precategory.
Notation BINOP := binop_precategory.
Section BINOP_category.
Lemma binop_iso_is_equiv (A B : ob BINOP)
(f : iso A B) : isweq (pr1 (pr1 f)).
Proof.
apply (isweq_iso _ (pr1binopfun _ _ (inv_from_iso f))).
- intro x.
set (T:=iso_inv_after_iso f).
apply subtypeInjectivity in T.
set (T':=toforallpaths _ _ _ T). apply T'.
intro x0.
apply isapropisbinopfun.
- intros y.
set (T:=iso_after_iso_inv f).
apply subtypeInjectivity in T.
set (T':=toforallpaths _ _ _ T). apply T'.
intros x0.
apply isapropisbinopfun.
Defined.
Lemma binop_iso_equiv (A B : ob BINOP) : iso A B → binopiso A B.
Proof.
intro f.
use make_binopiso.
set (X := binop_iso_is_equiv A B f).
apply (make_weq (pr1 (pr1 f)) X).
apply (pr2 (pr1 f)).
Defined.
Lemma binop_equiv_is_iso (A B : setwithbinop)
(f : binopiso A B) :
@is_iso BINOP A B (make_binopfun (pr1 (pr1 f)) (pr2 f)).
Proof.
apply (is_iso_qinv (C:=BINOP) _ (make_binopfun (pr1 (pr1 (invbinopiso f)))
(pr2 (invbinopiso f)))).
split; cbn. unfold compose, identity. cbn. unfold binopfuncomp, idbinopfun.
cbn. use total2_paths_f. cbn. apply funextfun. intros x.
apply homotinvweqweq. cbn. apply impred_isaprop. intros t.
apply impred_isaprop. intros t0. apply (pr2 (pr1 A)).
use total2_paths_f. cbn. apply funextfun. intros x.
apply homotweqinvweq. cbn. apply impred_isaprop. intros yt.
apply impred_isaprop. intros t0. apply (pr2 (pr1 B)).
Defined.
Lemma binop_equiv_iso (A B : BINOP) : binopiso A B → iso A B.
Proof.
intro f.
cbn in ×.
set (T := binop_equiv_is_iso A B f).
set (T' := @make_iso BINOP _ _ (make_binopfun (pr1 (pr1 f)) (pr2 f)) T).
apply T'.
Defined.
Lemma binop_iso_equiv_is_equiv (A B : BINOP) : isweq (binop_iso_equiv A B).
Proof.
apply (isweq_iso _ (binop_equiv_iso A B)).
intro; apply eq_iso. apply maponpaths.
unfold binop_equiv_iso, binop_iso_equiv. cbn.
use total2_paths_f. cbn. unfold make_binopfun.
apply subtypePath. intros y. apply isapropisbinopfun.
apply maponpaths. apply subtypePath.
unfold isPredicate.
intros x0. apply isapropisbinopfun.
apply idpath.
apply proofirrelevance.
apply isaprop_is_iso.
intros y. unfold binop_iso_equiv, binop_equiv_iso. cbn.
use total2_paths_f. cbn. unfold make_binopfun.
apply subtypePath. intros x. apply isapropisweq.
apply idpath.
apply proofirrelevance.
apply isapropisbinopfun.
Defined.
Definition binop_iso_equiv_weq (A B : BINOP) : (iso A B) ≃ (binopiso A B).
Proof.
∃ (binop_iso_equiv A B).
apply binop_iso_equiv_is_equiv.
Defined.
Lemma binop_equiv_iso_is_equiv (A B : BINOP) : isweq (binop_equiv_iso A B).
Proof.
apply (isweq_iso _ (binop_iso_equiv A B)).
intros x. apply subtypePath.
intros y. apply isapropisbinopfun.
unfold binop_equiv_iso, binop_iso_equiv. cbn.
use total2_paths_f. cbn. apply idpath.
apply isapropisweq.
intros y. unfold binop_equiv_iso, binop_iso_equiv. cbn.
use total2_paths_f. cbn. unfold make_binopfun. cbn.
apply subtypePath. intros x. apply isapropisbinopfun.
apply idpath. apply proofirrelevance.
apply isaprop_is_iso.
Qed.
Definition binop_equiv_weq_iso (A B : BINOP) :
(binopiso A B) ≃ (iso A B).
Proof.
∃ (binop_equiv_iso A B).
apply binop_equiv_iso_is_equiv.
Defined.
Definition binop_precategory_isweq (a b : BINOP) :
isweq (λ p : a = b, idtoiso p).
Proof.
use (@isweqhomot
(a = b) (iso a b)
(pr1weq (weqcomp (setwithbinop_univalence a b) (binop_equiv_weq_iso a b)))
_ _ (weqproperty (weqcomp (setwithbinop_univalence a b) (binop_equiv_weq_iso a b)))).
intros e. induction e.
use (pathscomp0 weqcomp_to_funcomp_app).
use total2_paths_f.
- use idpath.
- use proofirrelevance. use isaprop_is_iso.
Defined.
Opaque binop_precategory_isweq.
Definition binop_precategory_is_univalent : is_univalent binop_precategory.
Proof.
use make_dirprod.
- intros a b. exact (binop_precategory_isweq a b).
- exact has_homsets_BINOP.
Defined.
End BINOP_category.