Library UniMath.CategoryTheory.Subcategory.Full
Full sub(pre)categories
Contents
Require Import UniMath.Foundations.Sets.
Require Import UniMath.MoreFoundations.PartA.
Require Import UniMath.CategoryTheory.Core.Categories.
Require Import UniMath.CategoryTheory.Core.Isos.
Require Import UniMath.CategoryTheory.Core.Univalence.
Require Import UniMath.CategoryTheory.Core.Functors.
Require Import UniMath.CategoryTheory.Subcategory.Core.
Local Open Scope cat.
A full subcategory has the true predicate on morphisms
Lemma is_sub_precategory_full (C : precategory)
(C':hsubtype (ob C)) : is_sub_precategory C' (λ a b, λ f, htrue).
Proof.
split;
intros; exact tt.
Defined.
Definition full_sub_precategory {C : precategory}
(C': hsubtype (ob C)) :
sub_precategories C :=
tpair _ (make_dirprod C' (λ a b f, htrue)) (is_sub_precategory_full C C').
Any morphism between appropriate objects is a morphism of the full subprecategory
Definition morphism_in_full_subcat {C : precategory} {C' : hsubtype (ob C)}
{a b : ob (full_sub_precategory C')} (f : pr1 a --> pr1 b) :
precategory_morphisms a b := precategory_morphisms_in_subcat f tt.
{a b : ob (full_sub_precategory C')} (f : pr1 a --> pr1 b) :
precategory_morphisms a b := precategory_morphisms_in_subcat f tt.
Lemma full_sub_precategory_inclusion :
full (sub_precategory_inclusion C (full_sub_precategory C')).
Proof.
intros a b f.
apply hinhpr.
unfold hfiber.
∃ (f,, tt).
reflexivity.
Defined.
Lemma faithful_sub_precategory_inclusion :
faithful (sub_precategory_inclusion C (full_sub_precategory C')).
Proof.
intros a b; cbn.
apply isinclpr1.
intro; apply isapropunit.
Defined.
Lemma fully_faithful_sub_precategory_inclusion :
fully_faithful (sub_precategory_inclusion C (full_sub_precategory C')).
Proof.
apply full_and_faithful_implies_fully_faithful.
split.
- apply full_sub_precategory_inclusion.
- apply faithful_sub_precategory_inclusion.
Defined.
End FullyFaithful.
Definition full_img_sub_precategory {C D : precategory}(F : functor C D) :
sub_precategories D :=
full_sub_precategory (sub_img_functor F).
Definition full_img_functor_obj {C D : precategory}(F : functor C D) :
ob C → ob (full_img_sub_precategory F).
Proof.
intro c.
∃ (F c).
intros a b.
apply b.
∃ c.
apply identity_iso.
Defined.
Definition full_img_functor_data {C D : precategory}(F : functor C D) :
functor_data C (full_img_sub_precategory F).
Proof.
∃ (full_img_functor_obj F).
intros a b f.
∃ (#F f).
exact tt.
Defined.
Lemma is_functor_full_img (C D: precategory) (F : functor C D) :
is_functor (full_img_functor_data F).
Proof.
split.
intro a; simpl.
apply subtypePath.
intro; apply pr2.
apply functor_id.
intros a b c f g.
set ( H := eq_in_sub_precategory D (full_img_sub_precategory F)).
apply (H (full_img_functor_obj F a)(full_img_functor_obj F c)).
simpl; apply functor_comp.
Qed.
Definition functor_full_img {C D: precategory}
(F : functor C D) :
functor C (full_img_sub_precategory F) :=
tpair _ _ (is_functor_full_img C D F).
Morphisms in the full subprecat are equiv to morphisms in the precategory
does of course not need the univalent_category hypothesisDefinition hom_in_subcat_from_hom_in_precat (C : precategory)
(C' : hsubtype (ob C))
(a b : ob (full_sub_precategory C'))
(f : pr1 a --> pr1 b) : a --> b :=
tpair _ f tt.
Definition hom_in_precat_from_hom_in_full_subcat (C : precategory)
(C' : hsubtype (ob C))
(a b : ob (full_sub_precategory C')) :
a --> b → pr1 a --> pr1 b := @pr1 _ _ .
Lemma isweq_hom_in_precat_from_hom_in_full_subcat (C : precategory)
(C' : hsubtype (ob C))
(a b : ob (full_sub_precategory C')):
isweq (hom_in_precat_from_hom_in_full_subcat _ _ a b).
Proof.
apply (isweq_iso _
(hom_in_subcat_from_hom_in_precat _ _ a b)).
intro f.
destruct f. simpl.
apply eq_in_sub_precategory.
apply idpath.
intros. apply idpath.
Defined.
Lemma isweq_hom_in_subcat_from_hom_in_precat (C : precategory)
(C' : hsubtype (ob C))
(a b : ob (full_sub_precategory C')):
isweq (hom_in_subcat_from_hom_in_precat _ _ a b).
Proof.
apply (isweq_iso _
(hom_in_precat_from_hom_in_full_subcat _ _ a b)).
intro f.
intros. apply idpath.
intro f.
destruct f. simpl.
apply eq_in_sub_precategory.
apply idpath.
Defined.
Definition weq_hom_in_subcat_from_hom_in_precat (C : precategory)
(C' : hsubtype (ob C))
(a b : ob (full_sub_precategory C')): (pr1 a --> pr1 b) ≃ (a-->b) :=
tpair _ _ (isweq_hom_in_subcat_from_hom_in_precat C C' a b).
Lemma image_is_in_image (C D : precategory) (F : functor C D)
(a : ob C): is_in_img_functor F (F a).
Proof.
apply hinhpr.
∃ a.
apply identity_iso.
Defined.
Lemma functor_full_img_fully_faithful_if_fun_is (C D : precategory)
(F : functor C D) (H : fully_faithful F) :
fully_faithful (functor_full_img F).
Proof.
unfold fully_faithful in ×.
intros a b.
set (H' := weq_hom_in_subcat_from_hom_in_precat).
set (H'' := H' D (is_in_img_functor F)).
set (Fa := tpair (λ a : ob D, is_in_img_functor F a)
(F a) (image_is_in_image _ _ F a)).
set (Fb := tpair (λ a : ob D, is_in_img_functor F a)
(F b) (image_is_in_image _ _ F b)).
set (H3 := (H'' Fa Fb)).
assert (H2 : functor_on_morphisms (functor_full_img F) (a:=a) (b:=b) =
funcomp (functor_on_morphisms F (a:=a) (b:=b))
((H3))).
apply funextsec. intro f.
apply idpath.
rewrite H2.
apply (twooutof3c #F H3).
apply H.
apply pr2.
Qed.
Local Lemma functor_full_img_factorization_ob (C D: precategory)
(F : functor C D):
functor_on_objects F =
functor_on_objects (functor_composite
(functor_full_img F)
(sub_precategory_inclusion D _)).
Proof.
reflexivity.
Defined.
works up to eta conversion
Lemma iso_in_subcat_is_iso_in_precat (a b : ob (full_sub_precategory C'))
(f : iso a b): is_iso (C:=C) (a:=pr1 a) (b:=pr1 b)
(pr1 (pr1 f)).
Proof.
set (T:= pr1 (inv_from_iso f)).
apply (is_iso_qinv _ T).
unfold T; clear T.
split; simpl.
- set (T:=iso_inv_after_iso f).
apply (base_paths _ _ T).
- set (T:=iso_after_iso_inv f).
apply (base_paths _ _ T).
Defined.
Lemma iso_in_precat_is_iso_in_subcat (a b : ob (full_sub_precategory C'))
(f : iso (pr1 a) (pr1 b)) :
is_iso (C:=full_sub_precategory C')
(precategory_morphisms_in_subcat f tt).
Proof.
apply (is_iso_qinv _ (precategory_morphisms_in_subcat (inv_from_iso f) tt)).
split; simpl.
- apply eq_in_sub_precategory; simpl.
apply iso_inv_after_iso.
- apply eq_in_sub_precategory; simpl.
apply iso_after_iso_inv.
Qed.
Definition iso_from_iso_in_sub (a b : ob (full_sub_precategory C'))
(f : iso a b) : iso (pr1 a) (pr1 b) :=
tpair _ _ (iso_in_subcat_is_iso_in_precat a b f).
Definition iso_in_sub_from_iso (a b : ob (full_sub_precategory C'))
(f : iso (pr1 a) (pr1 b)) : iso a b :=
tpair _ _ (iso_in_precat_is_iso_in_subcat a b f).
Lemma isweq_iso_from_iso_in_sub (a b : ob (full_sub_precategory C')):
isweq (iso_from_iso_in_sub a b).
Proof.
apply (isweq_iso _ (iso_in_sub_from_iso a b)).
intro f.
apply eq_iso; simpl.
- apply eq_in_sub_precategory, idpath.
- intro f; apply eq_iso, idpath.
Defined.
Lemma isweq_iso_in_sub_from_iso (a b : ob (full_sub_precategory C')):
isweq (iso_in_sub_from_iso a b).
Proof.
apply (isweq_iso _ (iso_from_iso_in_sub a b)).
intro f; apply eq_iso, idpath.
intro f; apply eq_iso; simpl.
apply eq_in_sub_precategory, idpath.
Defined.
Definition Id_in_sub_to_iso (a b : ob (full_sub_precategory C')):
a = b → iso (pr1 a) (pr1 b) :=
funcomp (@idtoiso _ a b) (iso_from_iso_in_sub a b).
Lemma Id_in_sub_to_iso_equal_iso
(a b : ob (full_sub_precategory C')) :
Id_in_sub_to_iso a b = funcomp (total2_paths_hProp_equiv C' a b)
(@idtoiso _ (pr1 a) (pr1 b)).
Proof.
apply funextfun.
intro p.
destruct p.
apply eq_iso.
simpl; apply idpath.
Qed.
Lemma isweq_Id_in_sub_to_iso (a b : ob (full_sub_precategory C')) (H : is_univalent C) :
isweq (Id_in_sub_to_iso a b).
Proof.
rewrite Id_in_sub_to_iso_equal_iso.
apply (twooutof3c _ idtoiso).
apply pr2.
apply H.
Defined.
Lemma precat_paths_in_sub_as_3_maps
(a b : ob (full_sub_precategory C')):
@idtoiso _ a b = funcomp (Id_in_sub_to_iso a b)
(iso_in_sub_from_iso a b).
Proof.
apply funextfun.
intro p; destruct p.
apply eq_iso; simpl.
unfold precategory_morphisms_in_subcat.
apply eq_in_sub_precategory, idpath.
Qed.
Lemma isweq_sub_precat_paths_to_iso
(a b : ob (full_sub_precategory C')) (H : is_univalent C) :
isweq (@idtoiso _ a b).
Proof.
rewrite precat_paths_in_sub_as_3_maps.
match goal with |- isweq (funcomp ?f ?g) ⇒ apply (twooutof3c f g) end.
- apply isweq_Id_in_sub_to_iso; assumption.
- apply isweq_iso_in_sub_from_iso.
Defined.
Lemma is_univalent_full_subcat (H : is_univalent C) : is_univalent (full_sub_precategory C').
Proof.
unfold is_univalent.
split.
- intros; apply isweq_sub_precat_paths_to_iso; assumption.
- intros x y. apply is_set_sub_precategory_morphisms. apply (pr2 H).
Defined.
End full_sub_cat.
The carrier of a subcategory of a univalent category is itself univalent.
Definition subcategory_univalent (C : univalent_category) (C' : hsubtype (ob C)) :
univalent_category.
Proof.
use make_univalent_category.
- exact (subcategory C (full_sub_precategory C')).
- apply is_univalent_full_subcat, univalent_category_is_univalent.
Defined.
Lemma functor_full_img_essentially_surjective (A B : precategory)
(F : functor A B) :
essentially_surjective (functor_full_img F).
Proof.
intro b.
use (pr2 b).
intros [c h] q Hq.
apply Hq.
∃ c.
apply iso_in_sub_from_iso.
apply h.
Qed.
univalent_category.
Proof.
use make_univalent_category.
- exact (subcategory C (full_sub_precategory C')).
- apply is_univalent_full_subcat, univalent_category_is_univalent.
Defined.
Lemma functor_full_img_essentially_surjective (A B : precategory)
(F : functor A B) :
essentially_surjective (functor_full_img F).
Proof.
intro b.
use (pr2 b).
intros [c h] q Hq.
apply Hq.
∃ c.
apply iso_in_sub_from_iso.
apply h.
Qed.