Library UniMath.CategoryTheory.DisplayedCats.Examples.HLevel

The displayed category of types of a given h-level

Contents

Definitions

disp_hlevel: The displayed category of types of hlevel n

disp_prop: The displayed category of propositions

disp_HSET: The displayed category of sets

Equivalence of the total category of disp_HSET with HSET_univalent_category


Definition disp_HSET_equiv_HSET_adjunction_data :
  adjunction_data (total_precategory disp_HSET) HSET_univalent_category.
Proof.
  use tpair; [|use tpair].
  - use make_functor.
    + use make_functor_data.
      × exact (idfun _).
      × intros ? ? f; exact (pr1 f).
    + split.
      × intro; reflexivity.
      × intros ? ? ?; reflexivity.
  - use make_functor.
    + use make_functor_data.
      × exact (idfun _).
      × intros ? ? f; exact (f,, tt).
    + split.
      × intro; reflexivity.
      × intros ? ? ?; reflexivity.
  - split.
    + use make_nat_trans.
      × intros x.
        use tpair.
        -- exact (idfun _).
        -- exact tt.
      ×
        intros ? ? ?.
        apply subtypePath.
        -- intro. apply isapropunit.
        -- unfold funcomp; apply funextfun; intro; reflexivity.
    + use make_nat_trans.
      × intros ?; exact (idfun _).
      × intros ? ? ?; apply funextfun; intro; reflexivity.
Defined.

The displayed category of sets over type_precat is equivalent to the direct definition of HSET as a category.