Library UniMath.Bicategories.WkCatEnrichment.prebicategory
**********************************************************
Mitchell Riley
June 2016
I am very grateful to Peter LeFanu Lumsdaine, whose unreleased bicategories code strongly
influenced the definitions in this file.
Require Import UniMath.Foundations.PartD.
Require Import UniMath.CategoryTheory.Core.Categories.
Require Import UniMath.CategoryTheory.Core.Isos.
Require Import UniMath.CategoryTheory.Core.Univalence.
Require Import UniMath.CategoryTheory.Core.Functors.
Require Import UniMath.CategoryTheory.Core.NaturalTransformations.
Require Import UniMath.CategoryTheory.PrecategoryBinProduct.
Require Import UniMath.CategoryTheory.categories.StandardCategories. Require Import UniMath.CategoryTheory.HorizontalComposition.
Require Import UniMath.CategoryTheory.Equivalences.Core.
Local Open Scope cat.
Local Notation "C 'c×' D" := (precategory_binproduct C D)
(at level 75, right associativity).
Definition prebicategory_ob_hom : UU := ∑ C : UU, ∏ a b : C, precategory.
Coercion bicat_ob (C : prebicategory_ob_hom) : UU := pr1 C.
Definition homprecat {C : prebicategory_ob_hom} (a b : C) : precategory := pr2 C a b.
Local Notation "a '-1->' b" := (homprecat a b) (at level 50, left associativity).
Local Notation "f '-2->' g" := (@precategory_morphisms (_ -1->_) f g)
(at level 50, left associativity).
Local Notation "alpha ';v;' beta" := (@compose (_ -1-> _) _ _ _ alpha beta)
(at level 50, left associativity).
Definition prebicategory_id_comp :=
∑ C : prebicategory_ob_hom,
(∏ a : C, a -1-> a)
× (∏ a b c : C, ((a -1-> b) c× (b -1-> c)) ⟶ (a -1-> c)).
Coercion prebicategory_ob_hom_from_prebicategory_id_comp (C : prebicategory_id_comp) :
prebicategory_ob_hom := pr1 C.
Definition identity1 {C : prebicategory_id_comp} (a : C) : a -1-> a := pr1 (pr2 C) a.
Definition compose_functor {C : prebicategory_id_comp} (a b c : C)
: ((a -1-> b) c× (b -1-> c)) ⟶ (a -1-> c)
:= pr2 (pr2 C) a b c.
Definition compose1 {C : prebicategory_id_comp} {a b c : C} (f : a -1-> b) (g : b -1-> c)
:= functor_on_objects (compose_functor a b c) (make_dirprod f g).
Local Notation "f ';1;' g" := (compose1 f g)
(at level 50, left associativity).
Definition compose2h {C : prebicategory_id_comp} {a b c : C}
{f f' : a -1-> b}
{g g' : b -1-> c}
(alpha : f -2-> f')
(beta : g -2-> g')
: (f ;1; g) -2-> (f' ;1; g').
Proof.
apply functor_on_morphisms.
exact (precatbinprodmor alpha beta).
Defined.
Local Notation "alpha ';h;' beta" := (compose2h alpha beta) (at level 50, left associativity).
Definition compose2h_iso {C : prebicategory_id_comp} {a b c : C}
{f f' : a -1-> b}
{g g' : b -1-> c}
(alpha : iso f f')
(beta : iso g g')
: iso (f ;1; g) (f' ;1; g').
Proof.
apply functor_on_iso. exact (precatbinprodiso alpha beta).
Defined.
Local Notation "alpha ';hi;' beta" := (compose2h_iso alpha beta) (at level 50, left associativity).
Definition associator_trans_type {C : prebicategory_id_comp} (a b c d : C) : UU
:= pair_functor (functor_identity (a -1-> b)) (compose_functor b c d) ∙
compose_functor a b d
⟹
precategory_binproduct_assoc (a -1-> b) (b -1-> c) (c -1-> d) ∙
(pair_functor (compose_functor a b c) (functor_identity (c -1-> d)) ∙
compose_functor a c d).
Definition left_unitor_trans_type {C : prebicategory_id_comp} (a b : C) : UU
:= bindelta_pair_functor
(constant_functor (a -1-> b) (a -1-> a) (identity1 a))
(functor_identity (a -1-> b)) ∙ compose_functor a a b
⟹
functor_identity (a -1-> b).
Definition right_unitor_trans_type {C : prebicategory_id_comp} (a b : C) : UU
:= bindelta_pair_functor
(functor_identity (a -1-> b))
(constant_functor (a -1-> b) (b -1-> b) (identity1 b)) ∙
compose_functor a b b
⟹
functor_identity (a -1-> b).
Definition prebicategory_data : UU :=
∑ C : prebicategory_id_comp,
(∏ a b c d : C, associator_trans_type a b c d)
× (∏ a b : C, left_unitor_trans_type a b)
× (∏ a b : C, right_unitor_trans_type a b).
Coercion prebicategory_id_comp_from_prebicategory_data (C : prebicategory_data)
: prebicategory_id_comp
:= pr1 C.
Definition has_2mor_sets (C : prebicategory_data) : UU
:= ∏ (a b : C) (f g : a -1-> b), isaset (f -2-> g).
Definition associator_trans {C : prebicategory_data} (a b c d : C)
: pair_functor (functor_identity (a -1-> b))
(compose_functor b c d) ∙ compose_functor a b d
⟹
precategory_binproduct_assoc (a -1-> b) (b -1-> c) (c -1-> d) ∙
(pair_functor (compose_functor a b c) (functor_identity (c -1-> d)) ∙
compose_functor a c d)
:= pr1 (pr2 C) a b c d.
Definition associator_2mor {C : prebicategory_data} {a b c d : C}
(f : a -1-> b)
(g : b -1-> c)
(h : c -1-> d)
: (f ;1; (g ;1; h)) -2-> ((f ;1; g) ;1; h)
:= associator_trans a b c d (make_precatbinprod f (make_precatbinprod g h)).
Definition left_unitor_trans {C : prebicategory_data} (a b : C)
: bindelta_pair_functor
(constant_functor (a -1-> b) (a -1-> a) (identity1 a))
(functor_identity (a -1-> b)) ∙ compose_functor a a b
⟹
functor_identity (a -1-> b)
:= pr1 (pr2 (pr2 C)) a b.
Definition left_unitor_2mor {C : prebicategory_data} {a b : C}
(f : a -1-> b)
: identity1 a ;1; f -2-> f
:= left_unitor_trans a b f.
Definition right_unitor_trans {C : prebicategory_data} (a b : C)
: bindelta_pair_functor
(functor_identity (a -1-> b))
(constant_functor (a -1-> b) (b -1-> b) (identity1 b)) ∙
compose_functor a b b
⟹
functor_identity (a -1-> b)
:= pr2 (pr2 (pr2 C)) a b.
Definition right_unitor_2mor {C : prebicategory_data} {a b : C} (f : a -1-> b)
: f ;1; (identity1 b) -2-> f
:= right_unitor_trans a b f.
Definition associator_and_unitors_are_iso (C : prebicategory_data) : UU
:= (∏ (a b c d : C) (f : a -1-> b) (g : b -1-> c) (h : c -1-> d),
is_iso (associator_2mor f g h))
× (∏ (a b : C) (f : a -1-> b), is_iso (left_unitor_2mor f))
× (∏ (a b : C) (g : a -1-> b), is_iso (right_unitor_2mor g)).
Definition pentagon_axiom_type {C : prebicategory_data} {a b c d e : C}
(k : a -1-> b) (h : b -1-> c) (g : c -1-> d) (f : d -1-> e)
: UU
:=
associator_2mor k h (g ;1; f) ;v; associator_2mor (k ;1; h) g f
=
(identity k ;h; associator_2mor h g f)
;v; associator_2mor k (h ;1; g) f
;v; (associator_2mor k h g ;h; identity f).
Definition triangle_axiom_type {C : prebicategory_data} {a b c : C}
(f : a -1-> b)
(g : b -1-> c)
: UU
:= identity f ;h; left_unitor_2mor g =
associator_2mor f (identity1 b) g ;v; (right_unitor_2mor f ;h; identity g).
Definition prebicategory_coherence (C : prebicategory_data) : UU
:= (∏ (a b c d e : C) (k : a -1-> b) (h : b -1-> c) (g : c -1-> d) (f : d -1-> e),
pentagon_axiom_type k h g f)
× (∏ (a b c : C) (f : a -1-> b) (g : b -1-> c), triangle_axiom_type f g).
Definition is_prebicategory (C : prebicategory_data) : UU
:= has_2mor_sets C
× associator_and_unitors_are_iso C
× prebicategory_coherence C.
Definition prebicategory : UU := total2 is_prebicategory.
Coercion prebicategory_data_from_prebicategory (C : prebicategory) : prebicategory_data
:= pr1 C.
Definition prebicategory_has_2mor_sets {C : prebicategory} (a b : C)
: has_homsets (a -1-> b)
:= (pr1 (pr2 C)) a b.
Definition has_homcats (C : prebicategory) : UU
:= ∏ a b : C, is_univalent (a -1-> b).
Definition associator {C : prebicategory} {a b c d : C}
(f : a -1-> b) (g : b -1-> c) (h : c -1-> d)
: iso (f ;1; (g ;1; h)) ((f ;1; g) ;1; h).
Proof.
use tpair.
- exact (associator_2mor _ _ _).
- exact ((pr1 (pr1 (pr2 (pr2 C)))) a b c d f g h).
Defined.
Definition left_unitor {C : prebicategory} {a b : C}
(f : a -1-> b)
: iso ((identity1 a) ;1; f) f.
Proof.
use tpair.
- exact (left_unitor_2mor f).
- exact ((pr1 (pr2 (pr1 (pr2 (pr2 C))))) a b f).
Defined.
Definition right_unitor {C : prebicategory} {a b : C} (f : a -1-> b)
: iso (f ;1; (identity1 b)) f.
Proof.
use tpair.
- exact (right_unitor_2mor f).
- exact ((pr2 (pr2 (pr1 (pr2 (pr2 C))))) a b f).
Defined.
Definition pentagon_axiom {C : prebicategory} {a b c d e: C}
(k : a -1-> b) (h : b -1-> c) (g : c -1-> d) (f : d -1-> e)
: pentagon_axiom_type k h g f
:= pr1 (pr2 (pr2 (pr2 C))) a b c d e k h g f.
Definition triangle_axiom {C : prebicategory} {a b c : C}
(f : a -1-> b) (g : b -1-> c)
: triangle_axiom_type f g
:= pr2 (pr2 (pr2 (pr2 C))) a b c f g.
Lemma id_2mor_left {C : prebicategory} {b c : C} {g g' : b -1-> c} (beta : g -2-> g')
: identity (identity1 b) ;h; beta
= left_unitor g ;v; beta ;v; iso_inv_from_iso (left_unitor g').
Proof.
apply iso_inv_on_left.
apply pathsinv0.
apply (nat_trans_ax (left_unitor_trans b c)).
Defined.
Lemma id_2mor_right {C : prebicategory} {a b : C} {f f' : a -1-> b} (alpha : f -2-> f')
: alpha ;h; identity (identity1 b) =
right_unitor f ;v; alpha ;v; iso_inv_from_iso (right_unitor f').
Proof.
apply iso_inv_on_left.
apply pathsinv0.
apply (nat_trans_ax (right_unitor_trans a b)).
Defined.
Lemma horizontal_comp_id {C : prebicategory_id_comp} {a b c : C}
{f : a -1-> b} {g : b -1-> c}
: identity f ;h; identity g = identity (f ;1; g).
Proof.
unfold compose2h.
intermediate_path (functor_on_morphisms (compose_functor a b c)
(identity (make_precatbinprod f g))).
reflexivity.
apply functor_id.
Defined.
Lemma inv_horizontal_comp {C : prebicategory_id_comp} {a b c : C}
{f f' : a -1-> b} {g g' : b -1-> c}
(alpha : iso f f') (beta : iso g g')
: (iso_inv_from_iso alpha) ;hi; (iso_inv_from_iso beta)
= iso_inv_from_iso (alpha ;hi; beta).
Proof.
unfold compose2h_iso.
rewrite precatbinprodiso_inv.
apply functor_on_iso_inv.
Defined.
Lemma interchange {C : prebicategory} {a b c : C}
{f1 f2 f3 : a -1-> b} {g1 g2 g3 : b -1-> c}
(a1 : f1 -2-> f2) (a2 : f2 -2-> f3)
(b1 : g1 -2-> g2) (b2 : g2 -2-> g3)
: (a1 ;v; a2) ;h; (b1 ;v; b2) = (a1 ;h; b1) ;v; (a2 ;h; b2).
Proof.
unfold compose2h.
assert (X : precatbinprodmor a1 b1 · precatbinprodmor a2 b2
= precatbinprodmor (a1 ;v; a2) (b1 ;v; b2)) by reflexivity.
rewrite <- X.
apply functor_comp.
Qed.
Lemma triangle_identity' {C : prebicategory} {a b c : C} (f : a -1-> b) (g : b -1-> c)
: right_unitor_2mor f ;h; identity g =
iso_inv_from_iso (associator f (identity1 b) g) ;v; (identity _ ;h; left_unitor_2mor _).
Proof.
apply iso_inv_to_left.
change
(iso_inv_from_iso (iso_inv_from_iso (associator f (identity1 b) g)) ·
(right_unitor_2mor f ;h; identity g) =
identity f ;h; left_unitor_2mor g).
rewrite iso_inv_iso_inv.
apply pathsinv0.
apply triangle_axiom.
Qed.