Library UniMath.Bicategories.Transformations.Examples.ApTransformation
Each homotopy between functions give rise to a pseudotransformation
Require Import UniMath.Foundations.All.
Require Import UniMath.MoreFoundations.All.
Require Import UniMath.CategoryTheory.Core.Categories.
Require Import UniMath.CategoryTheory.Core.Functors.
Require Import UniMath.CategoryTheory.PrecategoryBinProduct.
Require Import UniMath.Bicategories.Core.Bicat. Import Bicat.Notations.
Require Import UniMath.Bicategories.Core.Invertible_2cells.
Require Import UniMath.Bicategories.Core.BicategoryLaws.
Require Import UniMath.Bicategories.PseudoFunctors.Display.PseudoFunctorBicat.
Require Import UniMath.Bicategories.PseudoFunctors.PseudoFunctor.
Require Import UniMath.Bicategories.Transformations.PseudoTransformation.
Import PseudoFunctor.Notations.
Require Import UniMath.Bicategories.Core.Examples.TwoType.
Require Import UniMath.Bicategories.PseudoFunctors.Examples.ApFunctor.
Local Open Scope cat.
Definition homotsec_natural
{X Y : UU}
{f g : X → Y}
(e : f ¬ g)
{x y : X}
(p : x = y)
: e x @ maponpaths g p = maponpaths f p @ e y.
Proof.
induction p.
apply pathscomp0rid.
Defined.
Definition homotsec_natural_natural
{X Y : UU}
{f g : X → Y}
(e : f ¬ g)
{x y : X}
{p q : x = y}
(h : p = q)
: maponpaths
(λ s : g x = g y, e x @ s)
(maponpaths (maponpaths g) h)
@ homotsec_natural e q
=
homotsec_natural e p
@ maponpaths (λ s : f x = f y, s @ e y) (maponpaths (maponpaths f) h).
Proof.
induction h.
exact (!(pathscomp0rid _)).
Defined.
Section ApTrans.
Context {X Y : UU}
(HX : isofhlevel 4 X)
(HY : isofhlevel 4 Y)
{f g : X → Y}
(e : f ¬ g).
Definition ap_pstrans_data
: pstrans_data
(ap_psfunctor HX HY f)
(ap_psfunctor HX HY g).
Proof.
use make_pstrans_data.
- exact e.
- intros x y p.
use make_invertible_2cell.
+ exact (homotsec_natural e p).
+ apply fundamental_groupoid_2cell_iso.
Defined.
Definition ap_pstrans_laws
: is_pstrans ap_pstrans_data.
Proof.
repeat split.
- simpl ; intros x y p q h ; cbn.
exact (homotsec_natural_natural e h).
- simpl ; intro x ; cbn.
exact (!(pathscomp0rid _ @ pathscomp0rid _)).
- simpl ; intros x y z p q ; cbn.
induction p, q.
cbn.
induction (e x).
apply idpath.
Qed.
Definition ap_pstrans
: pstrans
(ap_psfunctor HX HY f)
(ap_psfunctor HX HY g).
Proof.
use make_pstrans.
- exact ap_pstrans_data.
- exact ap_pstrans_laws.
Defined.
End ApTrans.
Require Import UniMath.MoreFoundations.All.
Require Import UniMath.CategoryTheory.Core.Categories.
Require Import UniMath.CategoryTheory.Core.Functors.
Require Import UniMath.CategoryTheory.PrecategoryBinProduct.
Require Import UniMath.Bicategories.Core.Bicat. Import Bicat.Notations.
Require Import UniMath.Bicategories.Core.Invertible_2cells.
Require Import UniMath.Bicategories.Core.BicategoryLaws.
Require Import UniMath.Bicategories.PseudoFunctors.Display.PseudoFunctorBicat.
Require Import UniMath.Bicategories.PseudoFunctors.PseudoFunctor.
Require Import UniMath.Bicategories.Transformations.PseudoTransformation.
Import PseudoFunctor.Notations.
Require Import UniMath.Bicategories.Core.Examples.TwoType.
Require Import UniMath.Bicategories.PseudoFunctors.Examples.ApFunctor.
Local Open Scope cat.
Definition homotsec_natural
{X Y : UU}
{f g : X → Y}
(e : f ¬ g)
{x y : X}
(p : x = y)
: e x @ maponpaths g p = maponpaths f p @ e y.
Proof.
induction p.
apply pathscomp0rid.
Defined.
Definition homotsec_natural_natural
{X Y : UU}
{f g : X → Y}
(e : f ¬ g)
{x y : X}
{p q : x = y}
(h : p = q)
: maponpaths
(λ s : g x = g y, e x @ s)
(maponpaths (maponpaths g) h)
@ homotsec_natural e q
=
homotsec_natural e p
@ maponpaths (λ s : f x = f y, s @ e y) (maponpaths (maponpaths f) h).
Proof.
induction h.
exact (!(pathscomp0rid _)).
Defined.
Section ApTrans.
Context {X Y : UU}
(HX : isofhlevel 4 X)
(HY : isofhlevel 4 Y)
{f g : X → Y}
(e : f ¬ g).
Definition ap_pstrans_data
: pstrans_data
(ap_psfunctor HX HY f)
(ap_psfunctor HX HY g).
Proof.
use make_pstrans_data.
- exact e.
- intros x y p.
use make_invertible_2cell.
+ exact (homotsec_natural e p).
+ apply fundamental_groupoid_2cell_iso.
Defined.
Definition ap_pstrans_laws
: is_pstrans ap_pstrans_data.
Proof.
repeat split.
- simpl ; intros x y p q h ; cbn.
exact (homotsec_natural_natural e h).
- simpl ; intro x ; cbn.
exact (!(pathscomp0rid _ @ pathscomp0rid _)).
- simpl ; intros x y z p q ; cbn.
induction p, q.
cbn.
induction (e x).
apply idpath.
Qed.
Definition ap_pstrans
: pstrans
(ap_psfunctor HX HY f)
(ap_psfunctor HX HY g).
Proof.
use make_pstrans.
- exact ap_pstrans_data.
- exact ap_pstrans_laws.
Defined.
End ApTrans.