Library UniMath.Bicategories.DisplayedBicats.Examples.Trivial
Trivial display.
Require Import UniMath.Foundations.All.
Require Import UniMath.MoreFoundations.PartA.
Require Import UniMath.CategoryTheory.Core.Categories.
Require Import UniMath.CategoryTheory.DisplayedCats.Auxiliary.
Require Import UniMath.CategoryTheory.DisplayedCats.Core.
Require Import UniMath.CategoryTheory.DisplayedCats.Constructions.
Require Import UniMath.Bicategories.Core.Bicat. Import Bicat.Notations.
Require Import UniMath.Bicategories.Core.Examples.Initial.
Require Import UniMath.Bicategories.Core.Examples.Final.
Require Import UniMath.Bicategories.DisplayedBicats.DispBicat. Import DispBicat.Notations.
Local Open Scope cat.
Local Open Scope mor_disp_scope.
Definition transportf_trivial (A B : UU) (a b : A) (p : a = b) (x : B) :
x = transportf (λ x : A, B) p x.
Proof.
induction p. apply idpath.
Defined.
Section Trivial_Displayed.
Require Import UniMath.MoreFoundations.PartA.
Require Import UniMath.CategoryTheory.Core.Categories.
Require Import UniMath.CategoryTheory.DisplayedCats.Auxiliary.
Require Import UniMath.CategoryTheory.DisplayedCats.Core.
Require Import UniMath.CategoryTheory.DisplayedCats.Constructions.
Require Import UniMath.Bicategories.Core.Bicat. Import Bicat.Notations.
Require Import UniMath.Bicategories.Core.Examples.Initial.
Require Import UniMath.Bicategories.Core.Examples.Final.
Require Import UniMath.Bicategories.DisplayedBicats.DispBicat. Import DispBicat.Notations.
Local Open Scope cat.
Local Open Scope mor_disp_scope.
Definition transportf_trivial (A B : UU) (a b : A) (p : a = b) (x : B) :
x = transportf (λ x : A, B) p x.
Proof.
induction p. apply idpath.
Defined.
Section Trivial_Displayed.
Variable (B C : bicat).
Definition trivial_disp_cat_ob_mor : disp_cat_ob_mor B
:= make_disp_cat_ob_mor
B
(λ _ : B, C)
(λ (_ _ : B) (a b : C) _, C⟦a,b⟧).
Definition trivial_disp_cat_id_comp
: disp_cat_id_comp B trivial_disp_cat_ob_mor
:= (λ (_ : B) (a : C), identity a),,
(λ (_ _ _ : B) _ _ (a b c : C) (f : C⟦a,b⟧) (g : C⟦b,c⟧), f · g).
Definition trivial_disp_cat_data : disp_cat_data B
:= trivial_disp_cat_ob_mor,, trivial_disp_cat_id_comp.
Definition trivial_disp_prebicat_1_id_comp_cells : disp_prebicat_1_id_comp_cells B
:= tpair (λ C:disp_cat_data B, disp_2cell_struct C)
trivial_disp_cat_data
(λ _ _ _ _ _ a b f g, f ==> g).
Definition trivial_displayed_data : disp_prebicat_data B.
use (trivial_disp_prebicat_1_id_comp_cells,, _).
repeat apply make_dirprod; cbn.
- intros _ _ _. exact (λ a b f, id2 f).
- intros _ _ _. exact (λ a b f, lunitor f).
- intros _ _ _. exact (λ a b f, runitor f).
- intros _ _ _. exact (λ a b f, linvunitor f).
- intros _ _ _. exact (λ a b f, rinvunitor f).
- intros _ _ _ _ _ _ _. exact (λ a b c d f g h, rassociator f g h).
- intros _ _ _ _ _ _ _. exact (λ a b c d f g h, lassociator f g h).
- intros _ _ _ _ _ _ _. exact (λ a b f g h x y, vcomp2 x y).
- intros _ _ _ _ _ _ _. exact (λ a b c f g1 g2 x, lwhisker f x).
- intros _ _ _ _ _ _ _. exact (λ a b c f1 f2 g x, rwhisker g x).
Defined.
Lemma trivial_disp_prebicat_laws : disp_prebicat_laws trivial_displayed_data.
Proof.
repeat apply make_dirprod; red; cbn; intros.
- etrans. apply id2_left. apply transportf_trivial.
- etrans. apply id2_right. apply transportf_trivial.
- etrans. apply vassocr. apply transportf_trivial.
- etrans. apply lwhisker_id2. apply transportf_trivial.
- etrans. apply id2_rwhisker. apply transportf_trivial.
- etrans. apply lwhisker_vcomp. apply transportf_trivial.
- etrans. apply rwhisker_vcomp. apply transportf_trivial.
- etrans. apply vcomp_lunitor. apply transportf_trivial.
- etrans. apply vcomp_runitor. apply transportf_trivial.
- etrans. apply lwhisker_lwhisker. apply transportf_trivial.
- etrans. apply rwhisker_lwhisker. apply transportf_trivial.
- etrans. apply rwhisker_rwhisker. apply transportf_trivial.
- etrans. apply vcomp_whisker. apply transportf_trivial.
- etrans. apply lunitor_linvunitor. apply transportf_trivial.
- etrans. apply linvunitor_lunitor. apply transportf_trivial.
- etrans. apply runitor_rinvunitor. apply transportf_trivial.
- etrans. apply rinvunitor_runitor. apply transportf_trivial.
- etrans. apply lassociator_rassociator. apply transportf_trivial.
- etrans. apply rassociator_lassociator. apply transportf_trivial.
- etrans. apply runitor_rwhisker. apply transportf_trivial.
- etrans. apply lassociator_lassociator. apply transportf_trivial.
Qed.
Definition trivial_displayed_prebicat : disp_prebicat B
:= trivial_displayed_data,, trivial_disp_prebicat_laws.
Definition trivial_displayed_bicat : disp_bicat B.
Proof.
refine (trivial_displayed_prebicat ,, _).
repeat intro; apply C.
Defined.
End Trivial_Displayed.
Definition prod_bicat
(B C : bicat)
: bicat
:= total_bicat (trivial_displayed_bicat B C).
Definition pairobj
{B C : bicat}
(X : B) (Y : C)
: prod_bicat B C
:= X ,, Y.
Definition pairmor
{B C : bicat}
{X₁ X₂ : B} {Y₁ Y₂ : C}
(f : X₁ --> X₂) (g : Y₁ --> Y₂)
: pairobj X₁ Y₁ --> pairobj X₂ Y₂
:= f ,, g.
Definition paircell
{B C : bicat}
{X₁ X₂ : B} {Y₁ Y₂ : C}
{f₁ f₂ : X₁ --> X₂} {g₁ g₂ : Y₁ --> Y₂}
(α : f₁ ==> f₂) (β : g₁ ==> g₂)
: pairmor f₁ g₁ ==> pairmor f₂ g₂
:= α ,, β.
Definition trivial_disp_cat_ob_mor : disp_cat_ob_mor B
:= make_disp_cat_ob_mor
B
(λ _ : B, C)
(λ (_ _ : B) (a b : C) _, C⟦a,b⟧).
Definition trivial_disp_cat_id_comp
: disp_cat_id_comp B trivial_disp_cat_ob_mor
:= (λ (_ : B) (a : C), identity a),,
(λ (_ _ _ : B) _ _ (a b c : C) (f : C⟦a,b⟧) (g : C⟦b,c⟧), f · g).
Definition trivial_disp_cat_data : disp_cat_data B
:= trivial_disp_cat_ob_mor,, trivial_disp_cat_id_comp.
Definition trivial_disp_prebicat_1_id_comp_cells : disp_prebicat_1_id_comp_cells B
:= tpair (λ C:disp_cat_data B, disp_2cell_struct C)
trivial_disp_cat_data
(λ _ _ _ _ _ a b f g, f ==> g).
Definition trivial_displayed_data : disp_prebicat_data B.
use (trivial_disp_prebicat_1_id_comp_cells,, _).
repeat apply make_dirprod; cbn.
- intros _ _ _. exact (λ a b f, id2 f).
- intros _ _ _. exact (λ a b f, lunitor f).
- intros _ _ _. exact (λ a b f, runitor f).
- intros _ _ _. exact (λ a b f, linvunitor f).
- intros _ _ _. exact (λ a b f, rinvunitor f).
- intros _ _ _ _ _ _ _. exact (λ a b c d f g h, rassociator f g h).
- intros _ _ _ _ _ _ _. exact (λ a b c d f g h, lassociator f g h).
- intros _ _ _ _ _ _ _. exact (λ a b f g h x y, vcomp2 x y).
- intros _ _ _ _ _ _ _. exact (λ a b c f g1 g2 x, lwhisker f x).
- intros _ _ _ _ _ _ _. exact (λ a b c f1 f2 g x, rwhisker g x).
Defined.
Lemma trivial_disp_prebicat_laws : disp_prebicat_laws trivial_displayed_data.
Proof.
repeat apply make_dirprod; red; cbn; intros.
- etrans. apply id2_left. apply transportf_trivial.
- etrans. apply id2_right. apply transportf_trivial.
- etrans. apply vassocr. apply transportf_trivial.
- etrans. apply lwhisker_id2. apply transportf_trivial.
- etrans. apply id2_rwhisker. apply transportf_trivial.
- etrans. apply lwhisker_vcomp. apply transportf_trivial.
- etrans. apply rwhisker_vcomp. apply transportf_trivial.
- etrans. apply vcomp_lunitor. apply transportf_trivial.
- etrans. apply vcomp_runitor. apply transportf_trivial.
- etrans. apply lwhisker_lwhisker. apply transportf_trivial.
- etrans. apply rwhisker_lwhisker. apply transportf_trivial.
- etrans. apply rwhisker_rwhisker. apply transportf_trivial.
- etrans. apply vcomp_whisker. apply transportf_trivial.
- etrans. apply lunitor_linvunitor. apply transportf_trivial.
- etrans. apply linvunitor_lunitor. apply transportf_trivial.
- etrans. apply runitor_rinvunitor. apply transportf_trivial.
- etrans. apply rinvunitor_runitor. apply transportf_trivial.
- etrans. apply lassociator_rassociator. apply transportf_trivial.
- etrans. apply rassociator_lassociator. apply transportf_trivial.
- etrans. apply runitor_rwhisker. apply transportf_trivial.
- etrans. apply lassociator_lassociator. apply transportf_trivial.
Qed.
Definition trivial_displayed_prebicat : disp_prebicat B
:= trivial_displayed_data,, trivial_disp_prebicat_laws.
Definition trivial_displayed_bicat : disp_bicat B.
Proof.
refine (trivial_displayed_prebicat ,, _).
repeat intro; apply C.
Defined.
End Trivial_Displayed.
Definition prod_bicat
(B C : bicat)
: bicat
:= total_bicat (trivial_displayed_bicat B C).
Definition pairobj
{B C : bicat}
(X : B) (Y : C)
: prod_bicat B C
:= X ,, Y.
Definition pairmor
{B C : bicat}
{X₁ X₂ : B} {Y₁ Y₂ : C}
(f : X₁ --> X₂) (g : Y₁ --> Y₂)
: pairobj X₁ Y₁ --> pairobj X₂ Y₂
:= f ,, g.
Definition paircell
{B C : bicat}
{X₁ X₂ : B} {Y₁ Y₂ : C}
{f₁ f₂ : X₁ --> X₂} {g₁ g₂ : Y₁ --> Y₂}
(α : f₁ ==> f₂) (β : g₁ ==> g₂)
: pairmor f₁ g₁ ==> pairmor f₂ g₂
:= α ,, β.