Library UniMath.Algebra.Tests
Require UniMath.Algebra.IteratedBinaryOperations.
Require UniMath.Foundations.NaturalNumbers.
Require UniMath.Algebra.IteratedBinaryOperations.
Require UniMath.Combinatorics.FiniteSets.
Module Test_assoc.
Import UniMath.Algebra.IteratedBinaryOperations.
Import UniMath.Foundations.NaturalNumbers.
Local Notation "[]" := Lists.nil (at level 0, format "[]").
Local Infix "::" := cons.
Section Test.
Context (X:UU) (e:X) (op:binop X) (w x y z:X).
Goal iterop_list e op [] = e. reflexivity. Qed.
Goal iterop_list e op (x::[]) = x. reflexivity. Qed.
Goal iterop_list e op (x::y::[]) = op x y. reflexivity. Qed.
Goal iterop_list e op (w::x::y::z::[]) = op w (op x (op y z)). reflexivity. Qed.
End Test.
Local Open Scope stn.
Open Scope multmonoid.
Goal ∏ (M:monoid) (f:stn 3 → M),
iterop_seq_mon(3,,f) = f(●O) × f(●1%nat) × f(●2).
Proof. reflexivity. Defined.
Goal ∏ (M:monoid) (f:stn 3 → Sequence M),
iterop_seq_seq_mon(3,,f) =
iterop_seq_mon (f(●0))
× iterop_seq_mon (f(●1%nat))
× iterop_seq_mon (f(●2)).
Proof. reflexivity. Defined.
Goal ∏ (M:monoid) (x y z:M), x×y×z = (x×y)*z. Proof. reflexivity. Defined.
Goal ∏ (M:monoid) (x y z:M), x×y×z = x*(y×z). Proof. apply assocax. Defined.
Local Open Scope addmonoid.
Import UniMath.Algebra.Monoids.AddNotation.
Goal ∏ (M:monoid) (x y z:M), x+y+z = (x+y)+z. Proof. reflexivity. Defined.
Goal ∏ (M:monoid) (x y z:M), x+y+z = x+(y+z). Proof. apply assocax. Defined.
End Test_assoc.
Require UniMath.Foundations.NaturalNumbers.
Require UniMath.Algebra.IteratedBinaryOperations.
Require UniMath.Combinatorics.FiniteSets.
Module Test_assoc.
Import UniMath.Algebra.IteratedBinaryOperations.
Import UniMath.Foundations.NaturalNumbers.
Local Notation "[]" := Lists.nil (at level 0, format "[]").
Local Infix "::" := cons.
Section Test.
Context (X:UU) (e:X) (op:binop X) (w x y z:X).
Goal iterop_list e op [] = e. reflexivity. Qed.
Goal iterop_list e op (x::[]) = x. reflexivity. Qed.
Goal iterop_list e op (x::y::[]) = op x y. reflexivity. Qed.
Goal iterop_list e op (w::x::y::z::[]) = op w (op x (op y z)). reflexivity. Qed.
End Test.
Local Open Scope stn.
Open Scope multmonoid.
Goal ∏ (M:monoid) (f:stn 3 → M),
iterop_seq_mon(3,,f) = f(●O) × f(●1%nat) × f(●2).
Proof. reflexivity. Defined.
Goal ∏ (M:monoid) (f:stn 3 → Sequence M),
iterop_seq_seq_mon(3,,f) =
iterop_seq_mon (f(●0))
× iterop_seq_mon (f(●1%nat))
× iterop_seq_mon (f(●2)).
Proof. reflexivity. Defined.
Goal ∏ (M:monoid) (x y z:M), x×y×z = (x×y)*z. Proof. reflexivity. Defined.
Goal ∏ (M:monoid) (x y z:M), x×y×z = x*(y×z). Proof. apply assocax. Defined.
Local Open Scope addmonoid.
Import UniMath.Algebra.Monoids.AddNotation.
Goal ∏ (M:monoid) (x y z:M), x+y+z = (x+y)+z. Proof. reflexivity. Defined.
Goal ∏ (M:monoid) (x y z:M), x+y+z = x+(y+z). Proof. apply assocax. Defined.
End Test_assoc.