Library UniMath.SubstitutionSystems.MonadsMultiSorted_alt
Require Import UniMath.Foundations.PartA.
Require Import UniMath.Foundations.PartD.
Require Import UniMath.Foundations.Sets.
Require Import UniMath.MoreFoundations.Tactics.
Require Import UniMath.Combinatorics.Lists.
Require Import UniMath.CategoryTheory.Core.Categories.
Require Import UniMath.CategoryTheory.Core.NaturalTransformations.
Require Import UniMath.CategoryTheory.Core.Functors.
Require Import UniMath.CategoryTheory.FunctorCategory.
Require Import UniMath.CategoryTheory.whiskering.
Require Import UniMath.CategoryTheory.limits.graphs.colimits.
Require Import UniMath.CategoryTheory.limits.binproducts.
Require Import UniMath.CategoryTheory.limits.products.
Require Import UniMath.CategoryTheory.limits.bincoproducts.
Require Import UniMath.CategoryTheory.limits.coproducts.
Require Import UniMath.CategoryTheory.limits.terminal.
Require Import UniMath.CategoryTheory.limits.initial.
Require Import UniMath.CategoryTheory.FunctorAlgebras.
Require Import UniMath.CategoryTheory.exponentials.
Require Import UniMath.CategoryTheory.Adjunctions.Core.
Require Import UniMath.CategoryTheory.Chains.All.
Require Import UniMath.CategoryTheory.Monads.Monads.
Require Import UniMath.CategoryTheory.categories.StandardCategories.
Require Import UniMath.CategoryTheory.Groupoids.
Local Open Scope cat.
Section MonadInSortToC.
Variables (sort : hSet) (Hsort : isofhlevel 3 sort) (C : category) (BC : BinCoproducts C) (TC : Terminal C).
Let sortToC : category := [path_pregroupoid sort Hsort, C].
Local Lemma BinCoproductsSortToC : BinCoproducts sortToC.
Proof.
apply BinCoproducts_functor_precat, BC.
Defined.
Local Lemma TerminalSortToC : Terminal sortToC.
Proof.
apply Terminal_functor_precat, TC.
Defined.
Local Notation "a ⊕ b" := (BinCoproductObject (BinCoproductsSortToC a b)).
Local Notation "1" := (TerminalObject TerminalSortToC).
Context {M : Monad sortToC}.
Definition sortToC_fun {X Y : sortToC} (f : ∏ t, C⟦pr1 X t,pr1 Y t⟧) : sortToC⟦X,Y⟧ :=
nat_trans_functor_path_pregroupoid f.
Definition bind_fun {X Y : sortToC} (f : ∏ t, C⟦pr1 X t,pr1 (M Y) t⟧) :
∏ t, C⟦pr1 (M X) t,pr1 (M Y) t⟧ :=
λ t, pr1 (bind (sortToC_fun f)) t.
Definition η_fun {X : sortToC} (t : sort) : C⟦pr1 X t,pr1 (M X) t⟧ :=
pr1 (η M X) t.
Lemma η_bind_fun {X Y : sortToC} (f : ∏ t, C⟦pr1 X t,pr1 (M Y) t⟧) (t : sort) :
η_fun t · bind_fun f t = f t.
Proof.
exact (nat_trans_eq_pointwise (η_bind (sortToC_fun f)) t).
Qed.
Lemma bind_η_fun {X : sortToC} (t : sort) :
bind_fun η_fun t = pr1 (identity (M X)) t.
Proof.
etrans; [|apply (nat_trans_eq_pointwise (@bind_η _ M X) t)].
apply cancel_postcomposition.
assert (H : sortToC_fun η_fun = η M X).
{ now apply nat_trans_eq; [apply homset_property|]. }
exact (nat_trans_eq_pointwise (maponpaths (λ a, # M a) H) t).
Qed.
Lemma bind_bind_fun {X Y Z : sortToC}
(f : ∏ t, C⟦pr1 X t,pr1 (M Y) t⟧)
(g : ∏ t, C⟦pr1 Y t, pr1 (M Z) t ⟧)
(t : sort) :
bind_fun f t · bind_fun g t = bind_fun (λ s, f s · bind_fun g s) t.
Proof.
etrans; [apply (nat_trans_eq_pointwise (bind_bind (sortToC_fun f) (sortToC_fun g)) t)|].
apply cancel_postcomposition.
assert (H : sortToC_fun f · bind (sortToC_fun g) = sortToC_fun (λ s, f s · bind_fun g s)).
{ now apply nat_trans_eq; [apply homset_property|]. }
exact (nat_trans_eq_pointwise (maponpaths (λ a, # M a) H) t).
Qed.
Definition monadSubstGen_instantiated {X Y : sortToC} (f : sortToC⟦X,M Y⟧) :
sortToC⟦M (X ⊕ Y),M Y⟧ := monadSubstGen M BinCoproductsSortToC Y f.
Definition monadSubstGen_fun {X Y : sortToC} (f : ∏ s, C⟦pr1 X s,pr1 (M Y) s⟧) :
∏ t, C⟦pr1 (M (X ⊕ Y)) t,pr1 (M Y) t⟧ :=
λ t, pr1 (monadSubstGen_instantiated (sortToC_fun f)) t.
Definition monadSubst_instantiated {X : sortToC} (f : sortToC⟦1,M X⟧) :
sortToC⟦M (1 ⊕ X),M X⟧ := monadSubst M BinCoproductsSortToC TerminalSortToC X f.
Definition mweak_instantiated {X Y : sortToC} :
sortToC⟦M Y,M (X ⊕ Y)⟧ := mweak M BinCoproductsSortToC _ _.
Definition mexch_instantiated {X Y Z : sortToC} :
sortToC⟦M (X ⊕ (Y ⊕ Z)), M (Y ⊕ (X ⊕ Z))⟧ :=
mexch M BinCoproductsSortToC _ _ _.
Lemma subst_interchange_law_gen_instantiated {X Y Z : sortToC}
(f : sortToC⟦X,M (Y ⊕ Z)⟧) (g : sortToC⟦Y, M Z⟧) :
monadSubstGen_instantiated f · monadSubstGen_instantiated g =
mexch_instantiated · monadSubstGen_instantiated (g · mweak_instantiated)
· monadSubstGen_instantiated (f · monadSubstGen_instantiated g).
Proof.
apply subst_interchange_law_gen.
Qed.
Lemma subst_interchange_law_instantiated {X : sortToC}
(f : sortToC⟦1,M (1 ⊕ X)⟧) (g : sortToC⟦1,M X⟧) :
monadSubst_instantiated f · monadSubst_instantiated g =
mexch_instantiated · monadSubst_instantiated (g · mweak_instantiated)
· monadSubst_instantiated (f · monadSubst_instantiated g).
Proof.
apply subst_interchange_law.
Qed.
End MonadInSortToC.
Require Import UniMath.Foundations.PartD.
Require Import UniMath.Foundations.Sets.
Require Import UniMath.MoreFoundations.Tactics.
Require Import UniMath.Combinatorics.Lists.
Require Import UniMath.CategoryTheory.Core.Categories.
Require Import UniMath.CategoryTheory.Core.NaturalTransformations.
Require Import UniMath.CategoryTheory.Core.Functors.
Require Import UniMath.CategoryTheory.FunctorCategory.
Require Import UniMath.CategoryTheory.whiskering.
Require Import UniMath.CategoryTheory.limits.graphs.colimits.
Require Import UniMath.CategoryTheory.limits.binproducts.
Require Import UniMath.CategoryTheory.limits.products.
Require Import UniMath.CategoryTheory.limits.bincoproducts.
Require Import UniMath.CategoryTheory.limits.coproducts.
Require Import UniMath.CategoryTheory.limits.terminal.
Require Import UniMath.CategoryTheory.limits.initial.
Require Import UniMath.CategoryTheory.FunctorAlgebras.
Require Import UniMath.CategoryTheory.exponentials.
Require Import UniMath.CategoryTheory.Adjunctions.Core.
Require Import UniMath.CategoryTheory.Chains.All.
Require Import UniMath.CategoryTheory.Monads.Monads.
Require Import UniMath.CategoryTheory.categories.StandardCategories.
Require Import UniMath.CategoryTheory.Groupoids.
Local Open Scope cat.
Section MonadInSortToC.
Variables (sort : hSet) (Hsort : isofhlevel 3 sort) (C : category) (BC : BinCoproducts C) (TC : Terminal C).
Let sortToC : category := [path_pregroupoid sort Hsort, C].
Local Lemma BinCoproductsSortToC : BinCoproducts sortToC.
Proof.
apply BinCoproducts_functor_precat, BC.
Defined.
Local Lemma TerminalSortToC : Terminal sortToC.
Proof.
apply Terminal_functor_precat, TC.
Defined.
Local Notation "a ⊕ b" := (BinCoproductObject (BinCoproductsSortToC a b)).
Local Notation "1" := (TerminalObject TerminalSortToC).
Context {M : Monad sortToC}.
Definition sortToC_fun {X Y : sortToC} (f : ∏ t, C⟦pr1 X t,pr1 Y t⟧) : sortToC⟦X,Y⟧ :=
nat_trans_functor_path_pregroupoid f.
Definition bind_fun {X Y : sortToC} (f : ∏ t, C⟦pr1 X t,pr1 (M Y) t⟧) :
∏ t, C⟦pr1 (M X) t,pr1 (M Y) t⟧ :=
λ t, pr1 (bind (sortToC_fun f)) t.
Definition η_fun {X : sortToC} (t : sort) : C⟦pr1 X t,pr1 (M X) t⟧ :=
pr1 (η M X) t.
Lemma η_bind_fun {X Y : sortToC} (f : ∏ t, C⟦pr1 X t,pr1 (M Y) t⟧) (t : sort) :
η_fun t · bind_fun f t = f t.
Proof.
exact (nat_trans_eq_pointwise (η_bind (sortToC_fun f)) t).
Qed.
Lemma bind_η_fun {X : sortToC} (t : sort) :
bind_fun η_fun t = pr1 (identity (M X)) t.
Proof.
etrans; [|apply (nat_trans_eq_pointwise (@bind_η _ M X) t)].
apply cancel_postcomposition.
assert (H : sortToC_fun η_fun = η M X).
{ now apply nat_trans_eq; [apply homset_property|]. }
exact (nat_trans_eq_pointwise (maponpaths (λ a, # M a) H) t).
Qed.
Lemma bind_bind_fun {X Y Z : sortToC}
(f : ∏ t, C⟦pr1 X t,pr1 (M Y) t⟧)
(g : ∏ t, C⟦pr1 Y t, pr1 (M Z) t ⟧)
(t : sort) :
bind_fun f t · bind_fun g t = bind_fun (λ s, f s · bind_fun g s) t.
Proof.
etrans; [apply (nat_trans_eq_pointwise (bind_bind (sortToC_fun f) (sortToC_fun g)) t)|].
apply cancel_postcomposition.
assert (H : sortToC_fun f · bind (sortToC_fun g) = sortToC_fun (λ s, f s · bind_fun g s)).
{ now apply nat_trans_eq; [apply homset_property|]. }
exact (nat_trans_eq_pointwise (maponpaths (λ a, # M a) H) t).
Qed.
Definition monadSubstGen_instantiated {X Y : sortToC} (f : sortToC⟦X,M Y⟧) :
sortToC⟦M (X ⊕ Y),M Y⟧ := monadSubstGen M BinCoproductsSortToC Y f.
Definition monadSubstGen_fun {X Y : sortToC} (f : ∏ s, C⟦pr1 X s,pr1 (M Y) s⟧) :
∏ t, C⟦pr1 (M (X ⊕ Y)) t,pr1 (M Y) t⟧ :=
λ t, pr1 (monadSubstGen_instantiated (sortToC_fun f)) t.
Definition monadSubst_instantiated {X : sortToC} (f : sortToC⟦1,M X⟧) :
sortToC⟦M (1 ⊕ X),M X⟧ := monadSubst M BinCoproductsSortToC TerminalSortToC X f.
Definition mweak_instantiated {X Y : sortToC} :
sortToC⟦M Y,M (X ⊕ Y)⟧ := mweak M BinCoproductsSortToC _ _.
Definition mexch_instantiated {X Y Z : sortToC} :
sortToC⟦M (X ⊕ (Y ⊕ Z)), M (Y ⊕ (X ⊕ Z))⟧ :=
mexch M BinCoproductsSortToC _ _ _.
Lemma subst_interchange_law_gen_instantiated {X Y Z : sortToC}
(f : sortToC⟦X,M (Y ⊕ Z)⟧) (g : sortToC⟦Y, M Z⟧) :
monadSubstGen_instantiated f · monadSubstGen_instantiated g =
mexch_instantiated · monadSubstGen_instantiated (g · mweak_instantiated)
· monadSubstGen_instantiated (f · monadSubstGen_instantiated g).
Proof.
apply subst_interchange_law_gen.
Qed.
Lemma subst_interchange_law_instantiated {X : sortToC}
(f : sortToC⟦1,M (1 ⊕ X)⟧) (g : sortToC⟦1,M X⟧) :
monadSubst_instantiated f · monadSubst_instantiated g =
mexch_instantiated · monadSubst_instantiated (g · mweak_instantiated)
· monadSubst_instantiated (f · monadSubst_instantiated g).
Proof.
apply subst_interchange_law.
Qed.
End MonadInSortToC.