Library UniMath.CategoryTheory.CategoriesWithBinOps
Require Import UniMath.Foundations.PartD.
Require Import UniMath.Foundations.Propositions.
Require Import UniMath.Foundations.Sets.
Require Import UniMath.Algebra.BinaryOperations.
Require Import UniMath.CategoryTheory.Core.Categories.
Require Import UniMath.CategoryTheory.Core.TransportMorphisms.
Require Import UniMath.CategoryTheory.PrecategoryBinProduct.
Require Import UniMath.CategoryTheory.opp_precat.
Local Open Scope cat.
Section def_precategory_with_binops.
Require Import UniMath.Foundations.Propositions.
Require Import UniMath.Foundations.Sets.
Require Import UniMath.Algebra.BinaryOperations.
Require Import UniMath.CategoryTheory.Core.Categories.
Require Import UniMath.CategoryTheory.Core.TransportMorphisms.
Require Import UniMath.CategoryTheory.PrecategoryBinProduct.
Require Import UniMath.CategoryTheory.opp_precat.
Local Open Scope cat.
Section def_precategory_with_binops.
Definition of precategories such that homs are binops.
Definition precategoryWithBinOpsData (C : category) : UU := ∏ (x y : C), binop (C⟦x, y⟧).
Definition precategoryWithBinOps : UU := ∑ C : category, precategoryWithBinOpsData C.
Definition precategoryWithBinOps_precategory (P : precategoryWithBinOps) : category := pr1 P.
Coercion precategoryWithBinOps_precategory : precategoryWithBinOps >-> category.
Definition make_precategoryWithBinOps (C : category) (H : precategoryWithBinOpsData C) :
precategoryWithBinOps := tpair _ C H.
Definition precategoryWithBinOps : UU := ∑ C : category, precategoryWithBinOpsData C.
Definition precategoryWithBinOps_precategory (P : precategoryWithBinOps) : category := pr1 P.
Coercion precategoryWithBinOps_precategory : precategoryWithBinOps >-> category.
Definition make_precategoryWithBinOps (C : category) (H : precategoryWithBinOpsData C) :
precategoryWithBinOps := tpair _ C H.
Gives the binop of the homs from x to y.
Definition to_binop {BC : precategoryWithBinOps} (x y : BC) : binop (BC⟦x, y⟧) := (pr2 BC) x y.
End def_precategory_with_binops.
Definition oppositePrecategoryWithBinOps (M : precategoryWithBinOps) : precategoryWithBinOps
:= make_precategoryWithBinOps
(op_category M)
(λ A B f g, @to_binop M (rm_opp_ob B) (rm_opp_ob A) (rm_opp_mor f) (rm_opp_mor g)).
Definition induced_precategoryWithBinOps (M : precategoryWithBinOps) {X:Type} (j : X → ob M)
: precategoryWithBinOps.
Proof.
∃ (induced_category M j). intros a b. exact (@to_binop M (j a) (j b)).
Defined.
End def_precategory_with_binops.
Definition oppositePrecategoryWithBinOps (M : precategoryWithBinOps) : precategoryWithBinOps
:= make_precategoryWithBinOps
(op_category M)
(λ A B f g, @to_binop M (rm_opp_ob B) (rm_opp_ob A) (rm_opp_mor f) (rm_opp_mor g)).
Definition induced_precategoryWithBinOps (M : precategoryWithBinOps) {X:Type} (j : X → ob M)
: precategoryWithBinOps.
Proof.
∃ (induced_category M j). intros a b. exact (@to_binop M (j a) (j b)).
Defined.