Library UniMath.Bicategories.Core.Examples.Groupoids
Groupoids
*********************************************************************************
Require Import UniMath.Foundations.All.
Require Import UniMath.MoreFoundations.All.
Require Import UniMath.CategoryTheory.Core.Categories.
Require Import UniMath.CategoryTheory.Core.Isos.
Require Import UniMath.CategoryTheory.Core.NaturalTransformations.
Require Import UniMath.CategoryTheory.Core.Univalence.
Require Import UniMath.CategoryTheory.Groupoids.
Require Import UniMath.Bicategories.Core.Bicat. Import Bicat.Notations.
Require Import UniMath.Bicategories.Core.Adjunctions.
Require Import UniMath.Bicategories.Core.EquivToAdjequiv.
Require Import UniMath.Bicategories.Core.AdjointUnique.
Require Import UniMath.Bicategories.Core.Univalence.
Require Import UniMath.Bicategories.Core.Examples.BicatOfUnivCats.
Require Import UniMath.Bicategories.DisplayedBicats.Examples.FullSub.
Local Open Scope cat.
Definition grpds : bicat
:= fullsubbicat bicat_of_univ_cats (λ X, is_pregroupoid (pr1 X)).
Definition grpds_univalent
: is_univalent_2 grpds.
Proof.
apply is_univalent_2_fullsubbicat.
- apply univalent_cat_is_univalent_2.
- intro.
apply isaprop_is_pregroupoid.
Defined.
Definition grpd_bicat_is_invertible_2cell
{G₁ G₂ : grpds}
{F₁ F₂ : G₁ --> G₂}
(α : F₁ ==> F₂)
: is_invertible_2cell α.
Proof.
use make_is_invertible_2cell.
- refine (_ ,, tt).
use make_nat_trans.
+ intros X.
exact (inv_from_iso (_ ,, pr2 G₂ _ _ (pr11 α X))).
+ abstract
(intros X Y f ; cbn ;
refine (!_) ;
apply iso_inv_on_right ;
rewrite !assoc ;
apply iso_inv_on_left ;
simpl ;
exact (!(pr21 α X Y f))).
- abstract
(apply subtypePath ; try (intro ; apply isapropunit)
; apply nat_trans_eq ; try apply homset_property ;
intro x ; cbn ;
exact (iso_inv_after_iso (_ ,, _))).
- abstract
(apply subtypePath ; try (intro ; apply isapropunit)
; apply nat_trans_eq ; try apply homset_property ;
intro x ; cbn ;
exact (iso_after_iso_inv (_ ,, _))).
Defined.