Library UniMath.Topology.Filters
Require Import UniMath.Foundations.Preamble.
Require Import UniMath.MoreFoundations.Tactics.
Require Export UniMath.Topology.Prelim.
Require Import UniMath.MoreFoundations.PartA.
Section Filter_def.
Context {X : UU}.
Context (F : (X → hProp) → hProp).
Definition isfilter_imply :=
∏ A B : X → hProp, (∏ x : X, A x → B x) → F A → F B.
Lemma isaprop_isfilter_imply : isaprop isfilter_imply.
Proof.
apply impred_isaprop ; intro A.
apply impred_isaprop ; intro B.
apply isapropimpl.
apply isapropimpl.
apply propproperty.
Qed.
Definition isfilter_finite_intersection :=
∏ (L : Sequence (X → hProp)), (∏ n, F (L n)) → F (finite_intersection L).
Lemma isaprop_isfilter_finite_intersection :
isaprop isfilter_finite_intersection.
Proof.
apply impred_isaprop ; intros L.
apply isapropimpl.
apply propproperty.
Qed.
Definition isfilter_htrue : hProp :=
F (λ _ : X, htrue).
Definition isfilter_and :=
∏ A B : X → hProp, F A → F B → F (λ x : X, A x ∧ B x).
Lemma isaprop_isfilter_and : isaprop isfilter_and.
Proof.
apply impred_isaprop ; intro A.
apply impred_isaprop ; intro B.
apply isapropimpl.
apply isapropimpl.
apply propproperty.
Qed.
Definition isfilter_notempty :=
∏ A : X → hProp, F A → ∃ x : X, A x.
Lemma isaprop_isfilter_notempty :
isaprop isfilter_notempty.
Proof.
apply impred_isaprop ; intro A.
apply isapropimpl.
apply propproperty.
Qed.
Lemma isfilter_finite_intersection_htrue :
isfilter_finite_intersection → isfilter_htrue.
Proof.
intros Hand.
unfold isfilter_htrue.
rewrite <- finite_intersection_htrue.
apply Hand.
intros m.
apply fromempty.
generalize (pr2 m).
now apply negnatlthn0.
Qed.
Lemma isfilter_finite_intersection_and :
isfilter_finite_intersection → isfilter_and.
Proof.
intros Hand A B Fa Fb.
rewrite <- finite_intersection_and.
apply Hand.
intros m.
induction m as [m Hm].
induction m as [ | m _].
exact Fa.
exact Fb.
Qed.
Lemma isfilter_finite_intersection_carac :
isfilter_htrue → isfilter_and
→ isfilter_finite_intersection.
Proof.
intros Htrue Hand L.
apply (pr2 (finite_intersection_hProp F)).
split.
- exact Htrue.
- exact Hand.
Qed.
End Filter_def.
Definition isPreFilter {X : UU} (F : (X → hProp) → hProp) :=
isfilter_imply F × isfilter_finite_intersection F.
Definition PreFilter (X : UU) :=
∑ (F : (X → hProp) → hProp), isPreFilter F.
Definition mkPreFilter {X : UU} (F : (X → hProp) → hProp)
(Himpl : isfilter_imply F)
(Htrue : isfilter_htrue F)
(Hand : isfilter_and F) : PreFilter X :=
F,, Himpl,, isfilter_finite_intersection_carac F Htrue Hand.
Definition pr1PreFilter (X : UU) (F : PreFilter X) : (X → hProp) → hProp := pr1 F.
Coercion pr1PreFilter : PreFilter >-> Funclass.
Definition isFilter {X : UU} (F : (X → hProp) → hProp) :=
isPreFilter F × isfilter_notempty F.
Definition Filter (X : UU) := ∑ F : (X → hProp) → hProp, isFilter F.
Definition pr1Filter (X : UU) (F : Filter X) : PreFilter X :=
pr1 F,, pr1 (pr2 F).
Coercion pr1Filter : Filter >-> PreFilter.
Definition mkFilter {X : UU} (F : (X → hProp) → hProp)
(Himp : isfilter_imply F)
(Htrue : isfilter_htrue F)
(Hand : isfilter_and F)
(Hempty : isfilter_notempty F) : Filter X :=
F ,, (Himp ,, (isfilter_finite_intersection_carac F Htrue Hand)) ,, Hempty.
Lemma emptynofilter :
∏ F : (empty → hProp) → hProp,
¬ isFilter F.
Proof.
intros F Hf.
generalize (isfilter_finite_intersection_htrue _ (pr2 (pr1 Hf))) ; intros Htrue.
generalize (pr2 Hf _ Htrue).
apply hinhuniv'.
apply isapropempty.
intros x.
apply (pr1 x).
Qed.
Section PreFilter_pty.
Context {X : UU}.
Context (F : PreFilter X).
Lemma filter_imply :
isfilter_imply F.
Proof.
exact (pr1 (pr2 F)).
Qed.
Lemma filter_finite_intersection :
isfilter_finite_intersection F.
Proof.
exact (pr2 (pr2 F)).
Qed.
Lemma filter_htrue :
isfilter_htrue F.
Proof.
apply isfilter_finite_intersection_htrue.
exact filter_finite_intersection.
Qed.
Lemma filter_and :
isfilter_and F.
Proof.
apply isfilter_finite_intersection_and.
exact filter_finite_intersection.
Qed.
Lemma filter_forall :
∏ A : X → hProp, (∏ x : X, A x) → F A.
Proof.
intros A Ha.
generalize filter_htrue.
apply filter_imply.
intros x _.
now apply Ha.
Qed.
End PreFilter_pty.
Section Filter_pty.
Context {X : UU}.
Context (F : Filter X).
Lemma filter_notempty :
isfilter_notempty F.
Proof.
exact (pr2 (pr2 F)).
Qed.
Lemma filter_const :
∏ A : hProp, F (λ _ : X, A) → ¬ (¬ A).
Proof.
intros A Fa Ha.
generalize (filter_notempty _ Fa).
apply hinhuniv'.
apply isapropempty.
intros x ; generalize (pr2 x); clear x.
exact Ha.
Qed.
End Filter_pty.
Lemma isasetPreFilter (X : UU) : isaset (PreFilter X).
Proof.
simple refine (isaset_carrier_subset (hSetpair _ _) (λ _, hProppair _ _)).
apply impred_isaset ; intros _.
apply isasethProp.
apply isapropdirprod.
apply isaprop_isfilter_imply.
apply isaprop_isfilter_finite_intersection.
Qed.
Lemma isasetFilter (X : UU) : isaset (Filter X).
Proof.
simple refine (isaset_carrier_subset (hSetpair _ _) (λ _, hProppair _ _)).
apply impred_isaset ; intros _.
apply isasethProp.
apply isapropdirprod.
apply isapropdirprod.
apply isaprop_isfilter_imply.
apply isaprop_isfilter_finite_intersection.
apply isaprop_isfilter_notempty.
Qed.
Definition filter_le {X : UU} (F G : PreFilter X) :=
∏ A : X → hProp, G A → F A.
Lemma istrans_filter_le {X : UU} :
∏ F G H : PreFilter X,
filter_le F G → filter_le G H → filter_le F H.
Proof.
intros F G H Hfg Hgh A Fa.
apply Hfg, Hgh, Fa.
Qed.
Lemma isrefl_filter_le {X : UU} :
∏ F : PreFilter X, filter_le F F.
Proof.
intros F A Fa.
exact Fa.
Qed.
Lemma isantisymm_filter_le {X : UU} :
∏ F G : PreFilter X, filter_le F G → filter_le G F → F = G.
Proof.
intros F G Hle Hge.
simple refine (subtypeEquality_prop (B := λ _, hProppair _ _) _).
apply isapropdirprod.
apply isaprop_isfilter_imply.
apply isaprop_isfilter_finite_intersection.
apply funextfun ; intros A.
apply hPropUnivalence.
now apply Hge.
now apply Hle.
Qed.
Definition PartialOrder_filter_le (X : UU) : PartialOrder (hSetpair (PreFilter _) (isasetPreFilter X)).
Proof.
simple refine (PartialOrderpair _ _).
- intros F G.
simple refine (hProppair _ _).
apply (filter_le F G).
apply impred_isaprop ; intros A.
apply isapropimpl.
apply propproperty.
- repeat split.
+ intros F G H ; simpl.
apply istrans_filter_le.
+ intros A ; simpl.
apply isrefl_filter_le.
+ intros F G ; simpl.
apply isantisymm_filter_le.
Defined.
Section filterim.
Context {X Y : UU}.
Context (f : X → Y) (F : (X → hProp) → hProp).
Context (Himp : isfilter_imply F)
(Htrue : isfilter_htrue F)
(Hand : isfilter_and F)
(Hempty : isfilter_notempty F).
Definition filterim :=
λ A : (Y → hProp), F (λ x : X, A (f x)).
Lemma filterim_imply :
isfilter_imply filterim.
Proof.
intros A B H.
apply Himp.
intros x.
apply H.
Qed.
Lemma filterim_htrue :
isfilter_htrue filterim.
Proof.
apply Htrue.
Qed.
Lemma filterim_and :
isfilter_and filterim.
Proof.
intros A B.
apply Hand.
Qed.
Lemma filterim_notempty :
isfilter_notempty filterim.
Proof.
intros A Fa.
generalize (Hempty _ Fa).
apply hinhfun.
intros x.
∃ (f (pr1 x)).
exact (pr2 x).
Qed.
End filterim.
Definition PreFilterIm {X Y : UU} (f : X → Y) (F : PreFilter X) : PreFilter Y.
Proof.
simple refine (mkPreFilter _ _ _ _).
exact (filterim f F).
apply filterim_imply, filter_imply.
apply filterim_htrue, filter_htrue.
apply filterim_and, filter_and.
Defined.
Definition FilterIm {X Y : UU} (f : X → Y) (F : Filter X) : Filter Y.
Proof.
refine (tpair _ _ _).
split.
apply (pr2 (PreFilterIm f F)).
apply filterim_notempty, filter_notempty.
Defined.
Lemma PreFilterIm_incr {X Y : UU} :
∏ (f : X → Y) (F G : PreFilter X),
filter_le F G → filter_le (PreFilterIm f F) (PreFilterIm f G).
Proof.
intros f F G Hle A ; simpl.
apply Hle.
Qed.
Lemma FilterIm_incr {X Y : UU} :
∏ (f : X → Y) (F G : Filter X),
filter_le F G → filter_le (FilterIm f F) (FilterIm f G).
Proof.
intros f F G Hle A ; simpl.
apply Hle.
Qed.
Definition filterlim {X Y : UU} (f : X → Y) (F : PreFilter X) (G : PreFilter Y) :=
filter_le (PreFilterIm f F) G.
Lemma filterlim_comp {X Y Z : UU} :
∏ (f : X → Y) (g : Y → Z)
(F : PreFilter X) (G : PreFilter Y) (H : PreFilter Z),
filterlim f F G → filterlim g G H → filterlim (funcomp f g) F H.
Proof.
intros f g F G H Hf Hg A Fa.
specialize (Hg _ Fa).
specialize (Hf _ Hg).
apply Hf.
Qed.
Lemma filterlim_decr_1 {X Y : UU} :
∏ (f : X → Y) (F F' : PreFilter X) (G : PreFilter Y),
filter_le F' F → filterlim f F G → filterlim f F' G.
Proof.
intros f F F' G Hf Hle A Ha.
specialize (Hle _ Ha).
specialize (Hf _ Hle).
apply Hf.
Qed.
Lemma filterlim_incr_2 {X Y : UU} :
∏ (f : X → Y) (F : PreFilter X) (G G' : PreFilter Y),
filter_le G G' → filterlim f F G → filterlim f F G'.
Proof.
intros f F G G' Hg Hle A Ha.
specialize (Hg _ Ha).
specialize (Hle _ Hg).
exact Hle.
Qed.
Section filterdom.
Context {X : UU}.
Context (F : (X → hProp) → hProp)
(Himp : isfilter_imply F)
(Htrue : isfilter_htrue F)
(Hand : isfilter_and F)
(Hempty : isfilter_notempty F).
Context (dom : X → hProp)
(Hdom : ∏ P, F P → ∃ x, dom x ∧ P x).
Definition filterdom : (X → hProp) → hProp
:= λ A : X → hProp, F (λ x : X, hProppair (dom x → A x) (isapropimpl _ _ (propproperty _))).
Lemma filterdom_imply :
isfilter_imply filterdom.
Proof.
intros A B Himpl.
apply Himp.
intros x Ax Hx.
apply Himpl, Ax, Hx.
Qed.
Lemma filterdom_htrue :
isfilter_htrue filterdom.
Proof.
apply Himp with (2 := Htrue).
intros x H _.
exact H.
Qed.
Lemma filterdom_and :
isfilter_and filterdom.
Proof.
intros A B Ha Hb.
generalize (Hand _ _ Ha Hb).
apply Himp.
intros x ABx Hx.
split.
- apply (pr1 ABx), Hx.
- apply (pr2 ABx), Hx.
Qed.
Lemma filterdom_notempty :
isfilter_notempty filterdom.
Proof.
intros.
intros A Fa.
generalize (Hdom _ Fa).
apply hinhfun.
intros x.
∃ (pr1 x).
apply (pr2 (pr2 x)), (pr1 (pr2 x)).
Qed.
End filterdom.
Definition PreFilterDom {X : UU} (F : PreFilter X) (dom : X → hProp) : PreFilter X.
Proof.
simple refine (mkPreFilter _ _ _ _).
- exact (filterdom F dom).
- apply filterdom_imply, filter_imply.
- apply filterdom_htrue.
apply filter_imply.
apply filter_htrue.
- apply filterdom_and.
apply filter_imply.
apply filter_and.
Defined.
Definition FilterDom {X : UU} (F : Filter X) (dom : X → hProp)
(Hdom : ∏ P, F P → ∃ x, dom x ∧ P x) : Filter X.
Proof.
refine (tpair _ _ _).
split.
apply (pr2 (PreFilterDom F dom)).
apply filterdom_notempty.
exact Hdom.
Defined.
Section filtersubtype.
Context {X : UU}.
Context (F : (X → hProp) → hProp)
(Himp : isfilter_imply F)
(Htrue : isfilter_htrue F)
(Hand : isfilter_and F)
(Hempty : isfilter_notempty F).
Context (dom : X → hProp)
(Hdom : ∏ P, F P → ∃ x, dom x ∧ P x).
Definition filtersubtype : ((∑ x : X, dom x) → hProp) → hProp :=
λ A : (∑ x : X, dom x) → hProp,
F (λ x : X, hProppair (∏ Hx : dom x, A (x,, Hx)) (impred_isaprop _ (λ _, propproperty _))).
Lemma filtersubtype_imply :
isfilter_imply filtersubtype.
Proof.
intros A B Himpl.
apply Himp.
intros x Ax Hx.
apply Himpl, Ax.
Qed.
Lemma filtersubtype_htrue :
isfilter_htrue filtersubtype.
Proof.
apply Himp with (2 := Htrue).
intros x H _.
exact H.
Qed.
Lemma filtersubtype_and :
isfilter_and filtersubtype.
Proof.
intros A B Ha Hb.
generalize (Hand _ _ Ha Hb).
apply Himp.
intros x ABx Hx.
split.
- apply (pr1 ABx).
- apply (pr2 ABx).
Qed.
Lemma filtersubtype_notempty :
isfilter_notempty filtersubtype.
Proof.
intros A Fa.
generalize (Hdom _ Fa).
apply hinhfun.
intros x.
∃ (pr1 x,,pr1 (pr2 x)).
exact (pr2 (pr2 x) (pr1 (pr2 x))).
Qed.
End filtersubtype.
Definition PreFilterSubtype {X : UU} (F : PreFilter X) (dom : X → hProp) : PreFilter (∑ x : X, dom x).
Proof.
simple refine (mkPreFilter _ _ _ _).
- exact (filtersubtype F dom).
- apply filtersubtype_imply, filter_imply.
- apply filtersubtype_htrue.
apply filter_imply.
apply filter_htrue.
- apply filtersubtype_and.
apply filter_imply.
apply filter_and.
Defined.
Definition FilterSubtype {X : UU} (F : Filter X) (dom : X → hProp)
(Hdom : ∏ P, F P → ∃ x, dom x ∧ P x) : Filter (∑ x : X, dom x).
Proof.
refine (tpair _ _ _).
split.
apply (pr2 (PreFilterSubtype F dom)).
apply filtersubtype_notempty.
exact Hdom.
Defined.
Section filterdirprod.
Context {X Y : UU}.
Context (Fx : (X → hProp) → hProp)
(Himp_x : isfilter_imply Fx)
(Htrue_x : isfilter_htrue Fx)
(Hand_x : isfilter_and Fx)
(Hempty_x : isfilter_notempty Fx).
Context (Fy : (Y → hProp) → hProp)
(Himp_y : isfilter_imply Fy)
(Htrue_y : isfilter_htrue Fy)
(Hand_y : isfilter_and Fy)
(Hempty_y : isfilter_notempty Fy).
Definition filterdirprod : (X × Y → hProp) → hProp :=
λ A : (X × Y) → hProp,
∃ (Ax : X → hProp) (Ay : Y → hProp),
Fx Ax × Fy Ay × (∏ (x : X) (y : Y), Ax x → Ay y → A (x,,y)).
Lemma filterdirprod_imply :
isfilter_imply filterdirprod.
Proof.
intros A B Himpl.
apply hinhfun.
intros C.
generalize (pr1 C) (pr1 (pr2 C)) (pr1 (pr2 (pr2 C))) (pr1 (pr2 (pr2 (pr2 C)))) (pr2 (pr2 (pr2 (pr2 C)))) ;
clear C ; intros Ax Ay Fax Fay Ha.
∃ Ax, Ay.
repeat split.
+ exact Fax.
+ exact Fay.
+ intros x y Hx Hy.
now apply Himpl, Ha.
Qed.
Lemma filterdirprod_htrue :
isfilter_htrue filterdirprod.
Proof.
apply hinhpr.
∃ (λ _:X, htrue), (λ _:Y, htrue).
repeat split.
+ apply Htrue_x.
+ apply Htrue_y.
Qed.
Lemma filterdirprod_and :
isfilter_and filterdirprod.
Proof.
intros A B.
apply hinhfun2.
intros C D.
generalize (pr1 C) (pr1 (pr2 C)) (pr1 (pr2 (pr2 C))) (pr1 (pr2 (pr2 (pr2 C)))) (pr2 (pr2 (pr2 (pr2 C)))) ;
clear C ; intros Ax Ay Fax Fay Ha.
generalize (pr1 D) (pr1 (pr2 D)) (pr1 (pr2 (pr2 D))) (pr1 (pr2 (pr2 (pr2 D)))) (pr2 (pr2 (pr2 (pr2 D)))) ;
clear D ; intros Bx By Fbx Fby Hb.
∃ (λ x : X, Ax x ∧ Bx x), (λ y : Y, Ay y ∧ By y).
repeat split.
+ now apply Hand_x.
+ now apply Hand_y.
+ apply Ha.
apply (pr1 X0).
apply (pr1 X1).
+ apply Hb.
apply (pr2 X0).
apply (pr2 X1).
Qed.
Lemma filterdirprod_notempty :
isfilter_notempty filterdirprod.
Proof.
intros A.
apply hinhuniv.
intros C.
generalize (pr1 C) (pr1 (pr2 C)) (pr1 (pr2 (pr2 C))) (pr1 (pr2 (pr2 (pr2 C)))) (pr2 (pr2 (pr2 (pr2 C)))) ;
clear C ; intros Ax Ay Fax Fay Ha.
generalize (Hempty_x _ Fax) (Hempty_y _ Fay).
apply hinhfun2.
intros x y.
∃ (pr1 x,,pr1 y).
apply Ha.
exact (pr2 x).
exact (pr2 y).
Qed.
End filterdirprod.
Definition PreFilterDirprod {X Y : UU} (Fx : PreFilter X) (Fy : PreFilter Y) : PreFilter (X × Y).
Proof.
simple refine (mkPreFilter _ _ _ _).
- exact (filterdirprod Fx Fy).
- apply filterdirprod_imply.
- apply filterdirprod_htrue.
apply filter_htrue.
apply filter_htrue.
- apply filterdirprod_and.
apply filter_and.
apply filter_and.
Defined.
Definition FilterDirprod {X Y : UU} (Fx : Filter X) (Fy : Filter Y) : Filter (X × Y).
Proof.
refine (tpair _ _ _).
split.
apply (pr2 (PreFilterDirprod Fx Fy)).
apply filterdirprod_notempty.
apply filter_notempty.
apply filter_notempty.
Defined.
Definition PreFilterPr1 {X Y : UU} (F : PreFilter (X × Y)) : PreFilter X :=
(PreFilterIm pr1 F).
Definition FilterPr1 {X Y : UU} (F : Filter (X × Y)) : Filter X :=
(FilterIm pr1 F).
Definition PreFilterPr2 {X Y : UU} (F : PreFilter (X × Y)) : PreFilter Y :=
(PreFilterIm (@pr2 X (λ _ : X, Y)) F).
Definition FilterPr2 {X Y : UU} (F : Filter (X × Y)) : Filter Y :=
(FilterIm (@pr2 X (λ _ : X, Y)) F).
Goal ∏ {X Y : UU} (F : PreFilter (X × Y)),
filter_le F (PreFilterDirprod (PreFilterPr1 F) (PreFilterPr2 F)).
Proof.
intros X Y F.
intros A.
apply hinhuniv.
intros C ;
generalize (pr1 C) (pr1 (pr2 C)) (pr1 (pr2 (pr2 C))) (pr1 (pr2 (pr2 (pr2 C)))) (pr2 (pr2 (pr2 (pr2 C)))) ;
clear C ; intros Ax Ay Fax Fay Ha.
simpl in ×.
generalize (filter_and _ _ _ Fax Fay).
apply filter_imply.
intros xy Fxy.
apply Ha.
exact (pr1 Fxy).
exact (pr2 Fxy).
Qed.
Goal ∏ {X Y : UU} (F : PreFilter X) (G : PreFilter Y),
filter_le (PreFilterPr1 (PreFilterDirprod F G)) F.
Proof.
intros X Y F G.
intros A Fa.
apply hinhpr.
∃ A, (λ _, htrue).
repeat split.
- exact Fa.
- now apply filter_htrue.
- intros. assumption.
Qed.
Goal ∏ {X Y : UU} (F : PreFilter X) (G : PreFilter Y),
filter_le (PreFilterPr2 (PreFilterDirprod F G)) G.
Proof.
intros X Y F G.
intros A Fa.
apply hinhpr.
∃ (λ _, htrue), A.
repeat split.
- now apply filter_htrue.
- exact Fa.
- intros. assumption.
Qed.
Section filternat.
Definition filternat : (nat → hProp) → hProp :=
λ P : nat → hProp, ∃ N : nat, ∏ n : nat, N ≤ n → P n.
Lemma filternat_imply :
isfilter_imply filternat.
Proof.
intros P Q H.
apply hinhfun.
intros N.
∃ (pr1 N).
intros n Hn.
now apply H, (pr2 N).
Qed.
Lemma filternat_htrue :
isfilter_htrue filternat.
Proof.
apply hinhpr.
now ∃ O.
Qed.
Lemma filternat_and :
isfilter_and filternat.
Proof.
intros A B.
apply hinhfun2.
intros Na Nb.
∃ (max (pr1 Na) (pr1 Nb)).
intros n Hn.
split.
+ apply (pr2 Na).
eapply istransnatleh, Hn.
now apply max_le_l.
+ apply (pr2 Nb).
eapply istransnatleh, Hn.
now apply max_le_r.
Qed.
Lemma filternat_notempty :
isfilter_notempty filternat.
Proof.
intros A.
apply hinhfun.
intros N.
∃ (pr1 N).
apply (pr2 N (pr1 N)).
now apply isreflnatleh.
Qed.
End filternat.
Definition FilterNat : Filter nat.
Proof.
simple refine (mkFilter _ _ _ _ _).
- apply filternat.
- apply filternat_imply.
- apply filternat_htrue.
- apply filternat_and.
- apply filternat_notempty.
Defined.
Section filtertop.
Context {X : UU} (x0 : ∥ X ∥).
Definition filtertop : (X → hProp) → hProp :=
λ A : X → hProp, hProppair (∏ x : X, A x) (impred_isaprop _ (λ _, propproperty _)).
Lemma filtertop_imply :
isfilter_imply filtertop.
Proof.
intros A B H Ha x.
apply H.
simple refine (Ha _).
Qed.
Lemma filtertop_htrue :
isfilter_htrue filtertop.
Proof.
intros x.
apply tt.
Qed.
Lemma filtertop_and :
isfilter_and filtertop.
Proof.
intros A B Ha Hb x.
split.
+ simple refine (Ha _).
+ simple refine (Hb _).
Qed.
Lemma filtertop_notempty :
isfilter_notempty filtertop.
Proof.
intros A Fa.
revert x0.
apply hinhfun.
intros x0.
∃ x0.
simple refine (Fa _).
Qed.
End filtertop.
Definition PreFilterTop {X : UU} : PreFilter X.
Proof.
simple refine (mkPreFilter _ _ _ _).
- exact filtertop.
- exact filtertop_imply.
- exact filtertop_htrue.
- exact filtertop_and.
Defined.
Definition FilterTop {X : UU} (x0 : ∥ X ∥) : Filter X.
Proof.
refine (tpair _ _ _).
split.
apply (pr2 PreFilterTop).
apply filtertop_notempty, x0.
Defined.
Lemma PreFilterTop_correct {X : UU} :
∏ (F : PreFilter X), filter_le F PreFilterTop.
Proof.
intros F A Ha.
apply filter_forall, Ha.
Qed.
Lemma FilterTop_correct {X : UU} :
∏ (x0 : ∥ X ∥) (F : Filter X), filter_le F (FilterTop x0).
Proof.
intros x0 F A Ha.
apply PreFilterTop_correct, Ha.
Qed.
Section filterintersection.
Context {X : UU}.
Context (is : ((X → hProp) → hProp) → UU).
Context (FF : (∑ F : ((X → hProp) → hProp), is F) → hProp)
(Himp : ∏ F, FF F → isfilter_imply (pr1 F))
(Htrue : ∏ F, FF F → isfilter_htrue (pr1 F))
(Hand : ∏ F, FF F → isfilter_and (pr1 F))
(Hempty : ∏ F, FF F → isfilter_notempty (pr1 F)).
Context (His : ∃ F, FF F).
Definition filterintersection : (X → hProp) → hProp :=
λ A : X → hProp, hProppair (∏ F, FF F → (pr1 F) A)
(impred_isaprop _ (λ _, isapropimpl _ _ (propproperty _))).
Lemma filterintersection_imply :
isfilter_imply filterintersection.
Proof.
intros A B H Ha F Hf.
apply (Himp F Hf A).
apply H.
simple refine (Ha _ _).
exact Hf.
Qed.
Lemma filterintersection_htrue :
isfilter_htrue filterintersection.
Proof.
intros F Hf.
now apply (Htrue F).
Qed.
Lemma filterintersection_and :
isfilter_and filterintersection.
Proof.
intros A B Ha Hb F Hf.
apply (Hand F Hf).
× now simple refine (Ha _ _).
× now simple refine (Hb _ _).
Qed.
Lemma filterintersection_notempty :
isfilter_notempty filterintersection.
Proof.
intros A Fa.
revert His.
apply hinhuniv.
intros F.
apply (Hempty (pr1 F)).
× exact (pr2 F).
× simple refine (Fa _ _).
exact (pr2 F).
Qed.
End filterintersection.
Definition PreFilterIntersection {X : UU} (FF : PreFilter X → hProp) : PreFilter X.
Proof.
intros.
simple refine (mkPreFilter _ _ _ _).
- apply (filterintersection _ FF).
- apply filterintersection_imply.
intros F _.
apply filter_imply.
- apply filterintersection_htrue.
intros F _.
apply filter_htrue.
- apply filterintersection_and.
intros F _.
apply filter_and.
Defined.
Definition FilterIntersection {X : UU} (FF : Filter X → hProp)
(Hff : ∃ F : Filter X, FF F) : Filter X.
Proof.
simple refine (mkFilter _ _ _ _ _).
- apply (filterintersection _ FF).
- apply filterintersection_imply.
intros F _.
apply (filter_imply (pr1Filter _ F)).
- apply filterintersection_htrue.
intros F _.
apply (filter_htrue (pr1Filter _ F)).
- apply filterintersection_and.
intros F _.
apply (filter_and (pr1Filter _ F)).
- apply filterintersection_notempty.
intros F _.
apply (filter_notempty F).
exact Hff.
Defined.
Lemma PreFilterIntersection_glb {X : UU} (FF : PreFilter X → hProp) :
(∏ F : PreFilter X, FF F → filter_le F (PreFilterIntersection FF))
× (∏ F : PreFilter X, (∏ G : PreFilter X, FF G → filter_le G F)
→ filter_le (PreFilterIntersection FF) F).
Proof.
split.
- intros F Hf A Ha.
now simple refine (Ha _ _).
- intros F H A Fa G Hg.
apply (H G Hg).
apply Fa.
Qed.
Lemma FilterIntersection_glb {X : UU} (FF : Filter X → hProp) Hff :
(∏ F : Filter X, FF F → filter_le F (FilterIntersection FF Hff))
× (∏ F : Filter X, (∏ G : Filter X, FF G → filter_le G F)
→ filter_le (FilterIntersection FF Hff) F).
Proof.
split.
- intros F Hf A Ha.
now simple refine (Ha _ _).
- intros F H A Fa G Hg.
apply (H G Hg).
apply Fa.
Qed.
Section filtergenerated.
Context {X : UU}.
Context (L : (X → hProp) → hProp).
Context (Hl : ∏ (L' : Sequence (X → hProp)), (∏ m, L (L' m)) → ∃ x : X, ∏ m, L' m x).
Definition filtergenerated : (X → hProp) → hProp :=
λ A : X → hProp,
∃ (L' : Sequence (X → hProp)), (∏ m, L (L' m)) × (∏ x : X, finite_intersection L' x → A x).
Lemma filtergenerated_imply :
isfilter_imply filtergenerated.
Proof.
intros A B H.
apply hinhfun ; intro Ha.
∃ (pr1 Ha), (pr1 (pr2 Ha)).
intros x Hx.
apply H.
apply (pr2 (pr2 Ha)), Hx.
Qed.
Lemma filtergenerated_htrue :
isfilter_htrue filtergenerated.
Proof.
apply hinhpr.
∃ nil.
split.
+ intros m.
induction (nopathsfalsetotrue (pr2 m)).
+ easy.
Qed.
Lemma filtergenerated_and :
isfilter_and filtergenerated.
Proof.
intros A B.
apply hinhfun2.
intros Ha Hb.
∃ (concatenate (pr1 Ha) (pr1 Hb)).
split.
+ simpl ; intros m.
unfold concatenate'.
set (Hm := (weqfromcoprodofstn_invmap (length (pr1 Ha)) (length (pr1 Hb))) m).
change ((weqfromcoprodofstn_invmap (length (pr1 Ha)) (length (pr1 Hb))) m) with Hm.
induction Hm as [Hm | Hm].
× rewrite coprod_rect_compute_1.
apply (pr1 (pr2 Ha)).
× rewrite coprod_rect_compute_2.
apply (pr1 (pr2 Hb)).
+ intros x Hx.
simpl in Hx.
unfold concatenate' in Hx.
split.
× apply (pr2 (pr2 Ha)).
intros m.
specialize (Hx (weqfromcoprodofstn_map _ _ (ii1 m))).
rewrite (weqfromcoprodofstn_eq1 _ _), coprod_rect_compute_1 in Hx.
exact Hx.
× apply (pr2 (pr2 Hb)).
intros m.
specialize (Hx (weqfromcoprodofstn_map _ _ (ii2 m))).
rewrite (weqfromcoprodofstn_eq1 _ _), coprod_rect_compute_2 in Hx.
exact Hx.
Qed.
Lemma filtergenerated_notempty :
isfilter_notempty filtergenerated.
Proof.
intros A.
apply hinhuniv.
intros L'.
generalize (Hl _ (pr1 (pr2 L'))).
apply hinhfun.
intros x.
∃ (pr1 x).
apply (pr2 (pr2 L')).
exact (pr2 x).
Qed.
End filtergenerated.
Definition PreFilterGenerated {X : UU} (L : (X → hProp) → hProp) : PreFilter X.
Proof.
simple refine (mkPreFilter _ _ _ _).
- apply (filtergenerated L).
- apply filtergenerated_imply.
- apply filtergenerated_htrue.
- apply filtergenerated_and.
Defined.
Definition FilterGenerated {X : UU} (L : (X → hProp) → hProp)
(Hl : ∏ L' : Sequence (X → hProp),
(∏ m : stn (length L'), L (L' m)) → ∃ x : X, finite_intersection L' x) : Filter X.
Proof.
∃ (PreFilterGenerated L).
split.
apply (pr2 (PreFilterGenerated L)).
apply filtergenerated_notempty.
exact Hl.
Defined.
Lemma PreFilterGenerated_correct {X : UU} :
∏ (L : (X → hProp) → hProp),
(∏ A : X → hProp, L A → (PreFilterGenerated L) A)
× (∏ F : PreFilter X,
(∏ A : X → hProp, L A → F A) → filter_le F (PreFilterGenerated L)).
Proof.
intros L.
split.
- intros A La.
apply hinhpr.
∃ (singletonSequence A).
split.
+ intros. assumption.
+ intros x Hx.
apply (Hx (O,,paths_refl _)).
- intros F Hf A.
apply hinhuniv.
intros Ha.
refine (filter_imply _ _ _ _ _).
apply (pr2 (pr2 Ha)).
apply filter_finite_intersection.
intros m.
apply Hf.
apply (pr1 (pr2 Ha)).
Qed.
Lemma FilterGenerated_correct {X : UU} :
∏ (L : (X → hProp) → hProp)
(Hl : ∏ L' : Sequence (X → hProp),
(∏ m, L (L' m)) →
(∃ x : X, finite_intersection L' x)),
(∏ A : X → hProp, L A → (FilterGenerated L Hl) A)
× (∏ F : Filter X,
(∏ A : X → hProp, L A → F A) → filter_le F (FilterGenerated L Hl)).
Proof.
intros L Hl.
split.
- intros A La.
apply hinhpr.
∃ (singletonSequence A).
split.
+ intros; assumption.
+ intros x Hx.
apply (Hx (O,,paths_refl _)).
- intros F Hf A.
apply hinhuniv.
intros Ha.
refine (filter_imply _ _ _ _ _).
apply (pr2 (pr2 Ha)).
apply filter_finite_intersection.
intros m.
apply Hf.
apply (pr1 (pr2 Ha)).
Qed.
Lemma FilterGenerated_inv {X : UU} :
∏ (L : (X → hProp) → hProp) (F : Filter X),
(∏ A : X → hProp, L A → F A) →
∏ (L' : Sequence (X → hProp)),
(∏ m, L (L' m)) →
(∃ x : X, finite_intersection L' x).
Proof.
intros L F Hf L' Hl'.
apply (filter_notempty F).
apply filter_finite_intersection.
intros m.
apply Hf, Hl'.
Qed.
Lemma ex_filter_le {X : UU} :
∏ (F : Filter X) (A : X → hProp),
(∑ G : Filter X, filter_le G F × G A)
↔ (∏ B : X → hProp, F B → (∃ x : X, A x ∧ B x)).
Proof.
intros F A.
split.
- intros G B Fb.
apply (filter_notempty (pr1 G)).
apply filter_and.
apply (pr2 (pr2 G)).
now apply (pr1 (pr2 G)).
- intros H.
simple refine (tpair _ _ _).
simple refine (FilterGenerated _ _).
+ intros B.
apply (F B ∨ B = A).
+ intros L Hl.
assert (B : ∃ B : X → hProp, F B × (∏ x, (A x ∧ B x → A x ∧ finite_intersection L x))).
{ revert L Hl.
apply (Sequence_rect (P := λ L : Sequence (X → hProp),
(∏ m : stn (length L), (λ B : X → hProp, F B ∨ B = A) (L m)) →
∃ B : X → hProp,
F B × (∏ x : X, A x ∧ B x → A x ∧ finite_intersection L x))).
- intros Hl.
apply hinhpr.
rewrite finite_intersection_htrue.
∃ (λ _, htrue).
split.
+ exact (filter_htrue F).
+ intros; assumption.
- intros L B IHl Hl.
rewrite finite_intersection_append.
simple refine (hinhuniv _ _).
3: apply IHl.
intros C.
generalize (Hl lastelement) ; simpl.
rewrite append_vec_compute_2.
apply hinhfun.
apply sumofmaps ; [intros Fl | intros ->].
+ refine (tpair _ _ _).
split.
× apply (filter_and F).
apply (pr1 (pr2 C)).
apply Fl.
× intros x H0 ; repeat split.
exact (pr1 H0).
exact (pr2 (pr2 H0)).
simple refine (pr2 (pr2 (pr2 C) x _)).
split.
exact (pr1 H0).
exact (pr1 (pr2 H0)).
+ ∃ (pr1 C) ; split.
× exact (pr1 (pr2 C)).
× intros x H0 ; repeat split.
exact (pr1 H0).
exact (pr1 H0).
simple refine (pr2 (pr2 (pr2 C) x _)).
exact H0.
+ intros.
generalize (Hl (dni_lastelement m)) ; simpl.
rewrite <- replace_dni_last.
now rewrite append_vec_compute_1. }
revert B.
apply hinhuniv.
intros B.
generalize (H (pr1 B) (pr1 (pr2 B))).
apply hinhfun.
intros x.
∃ (pr1 x).
simple refine (pr2 (pr2 (pr2 B) (pr1 x) _)).
exact (pr2 x).
+ split.
× intros B Fb.
apply hinhpr.
∃ (singletonSequence B).
split.
intros m.
apply hinhpr.
now left.
intros x Hx.
apply (Hx (O ,, paths_refl _)).
× apply hinhpr.
∃ (singletonSequence A).
split.
intros m.
apply hinhpr.
now right.
intros x Hx.
apply (Hx (O ,, paths_refl _)).
Qed.
Section base.
Context {X : UU}.
Context (base : (X → hProp) → hProp).
Definition isbase_and :=
∏ A B : X → hProp, base A → base B → ∃ C : X → hProp, base C × (∏ x, C x → A x ∧ B x).
Definition isbase_notempty :=
∃ A : X → hProp, base A.
Definition isbase_notfalse :=
∏ A, base A → ∃ x, A x.
Definition isBaseOfPreFilter :=
isbase_and × isbase_notempty.
Definition isBaseOfFilter :=
isbase_and × isbase_notempty × isbase_notfalse.
End base.
Definition BaseOfPreFilter (X : UU) :=
∑ (base : (X → hProp) → hProp), isBaseOfPreFilter base.
Definition pr1BaseOfPreFilter {X : UU} : BaseOfPreFilter X → ((X → hProp) → hProp) := pr1.
Coercion pr1BaseOfPreFilter : BaseOfPreFilter >-> Funclass.
Definition BaseOfFilter (X : UU) :=
∑ (base : (X → hProp) → hProp), isBaseOfFilter base.
Definition pr1BaseOfFilter {X : UU} : BaseOfFilter X → BaseOfPreFilter X.
Proof.
intros base.
∃ (pr1 base).
split.
- apply (pr1 (pr2 base)).
- apply (pr1 (pr2 (pr2 base))).
Defined.
Coercion pr1BaseOfFilter : BaseOfFilter >-> BaseOfPreFilter.
Lemma BaseOfPreFilter_and {X : UU} (base : BaseOfPreFilter X) :
∏ A B : X → hProp, base A → base B → ∃ C : X → hProp, base C × (∏ x, C x → A x ∧ B x).
Proof.
apply (pr1 (pr2 base)).
Qed.
Lemma BaseOfPreFilter_notempty {X : UU} (base : BaseOfPreFilter X) :
∃ A : X → hProp, base A.
Proof.
apply (pr2 (pr2 base)).
Qed.
Lemma BaseOfFilter_and {X : UU} (base : BaseOfFilter X) :
∏ A B : X → hProp, base A → base B → ∃ C : X → hProp, base C × (∏ x, C x → A x ∧ B x).
Proof.
apply (pr1 (pr2 base)).
Qed.
Lemma BaseOfFilter_notempty {X : UU} (base : BaseOfFilter X) :
∃ A : X → hProp, base A.
Proof.
apply (pr1 (pr2 (pr2 base))).
Qed.
Lemma BaseOfFilter_notfalse {X : UU} (base : BaseOfFilter X) :
∏ A, base A → ∃ x, A x.
Proof.
apply (pr2 (pr2 (pr2 base))).
Qed.
Section filterbase.
Context {X : UU}.
Context (base : (X → hProp) → hProp)
(Hand : isbase_and base)
(Hempty : isbase_notempty base)
(Hfalse : isbase_notfalse base).
Definition filterbase : (X → hProp) → hProp :=
λ A : X → hProp, (∃ B : X → hProp, base B × ∏ x, B x → A x).
Lemma filterbase_imply :
isfilter_imply filterbase.
Proof.
intros A B H.
apply hinhfun.
intros A'.
∃ (pr1 A').
split.
apply (pr1 (pr2 A')).
intros x Hx.
apply H.
now apply (pr2 (pr2 A')).
Qed.
Lemma filterbase_htrue :
isfilter_htrue filterbase.
Proof.
revert Hempty.
apply hinhfun.
intros A.
∃ (pr1 A).
split.
apply (pr2 A).
intros. exact tt.
Qed.
Lemma filterbase_and :
isfilter_and filterbase.
Proof.
intros A B.
apply hinhuniv2.
intros A' B'.
refine (hinhfun _ _).
2: apply Hand.
2: (apply (pr1 (pr2 A'))).
2: (apply (pr1 (pr2 B'))).
intros C'.
∃ (pr1 C').
split.
apply (pr1 (pr2 C')).
intros x Cx ; split.
apply (pr2 (pr2 A')).
now refine (pr1 (pr2 (pr2 C') _ _)).
apply (pr2 (pr2 B')).
now refine (pr2 (pr2 (pr2 C') _ _)).
Qed.
Lemma filterbase_notempty :
isfilter_notempty filterbase.
Proof.
intros A.
apply hinhuniv.
intros B.
generalize (Hfalse _ (pr1 (pr2 B))).
apply hinhfun.
intros x.
∃ (pr1 x).
apply (pr2 (pr2 B)), (pr2 x).
Qed.
Lemma base_finite_intersection :
∏ L : Sequence (X → hProp),
(∏ n, base (L n)) → ∃ A, base A × (∏ x, A x → finite_intersection L x).
Proof.
intros L Hbase.
apply (pr2 (finite_intersection_hProp (λ B, ∃ A : X → hProp, base A × (∏ x : X, A x → B x)))).
split.
- revert Hempty.
apply hinhfun.
intros A.
now ∃ (pr1 A), (pr2 A).
- intros A B.
apply hinhuniv2.
intros A' B'.
generalize (Hand _ _ (pr1 (pr2 A')) (pr1 (pr2 B'))).
apply hinhfun.
intros C.
∃ (pr1 C).
split.
exact (pr1 (pr2 C)).
intros x Cx.
split.
apply (pr2 (pr2 A')), (pr1 (pr2 (pr2 C) _ Cx)).
apply (pr2 (pr2 B')), (pr2 (pr2 (pr2 C) _ Cx)).
- intros n.
apply hinhpr.
∃ (L n).
split.
now apply Hbase.
intros; assumption.
Qed.
Lemma filterbase_genetated :
filterbase = filtergenerated base.
Proof.
apply funextfun ; intros P.
apply hPropUnivalence.
- apply hinhfun.
intros A.
∃ (singletonSequence (pr1 A)).
split.
+ intros m ; simpl.
exact (pr1 (pr2 A)).
+ intros x Ax.
apply (pr2 (pr2 A)).
simple refine (Ax _).
now ∃ 0%nat.
- apply hinhuniv.
intros L.
generalize (base_finite_intersection (pr1 L) (pr1 (pr2 L))).
apply hinhfun.
intros A.
∃ (pr1 A) ; split.
exact (pr1 (pr2 A)).
intros x Ax.
now apply (pr2 (pr2 L)), (pr2 (pr2 A)).
Qed.
Lemma filterbase_generated_hypothesis :
∏ L' : Sequence (X → hProp),
(∏ m : stn (length L'), base (L' m))
→ ∃ x : X, finite_intersection L' x.
Proof.
intros L Hbase.
generalize (base_finite_intersection L Hbase).
apply hinhuniv.
intros A.
generalize (Hfalse _ (pr1 (pr2 A))).
apply hinhfun.
intros x.
∃ (pr1 x).
apply (pr2 (pr2 A)).
exact (pr2 x).
Qed.
End filterbase.
Definition PreFilterBase {X : UU} (base : BaseOfPreFilter X) : PreFilter X.
Proof.
simple refine (mkPreFilter _ _ _ _).
- apply (filterbase base).
- apply filterbase_imply.
- apply filterbase_htrue, BaseOfPreFilter_notempty.
- apply filterbase_and.
intros A B.
now apply BaseOfPreFilter_and.
Defined.
Definition FilterBase {X : UU} (base : BaseOfFilter X) : Filter X.
Proof.
intros.
∃ (pr1 (PreFilterBase base)).
split.
simple refine (pr2 (PreFilterBase base)).
apply filterbase_notempty.
intros A Ha.
simple refine (BaseOfFilter_notfalse _ _ _).
apply base.
apply Ha.
Defined.
Lemma PreFilterBase_Generated {X : UU} (base : BaseOfPreFilter X) :
PreFilterBase base = PreFilterGenerated base.
Proof.
simple refine (subtypeEquality_prop (B := λ _, hProppair _ _) _).
apply isapropdirprod.
apply isaprop_isfilter_imply.
apply isaprop_isfilter_finite_intersection.
simpl.
apply filterbase_genetated.
intros A B.
apply (BaseOfPreFilter_and base).
apply (BaseOfPreFilter_notempty base).
Qed.
Lemma FilterBase_Generated {X : UU} (base : BaseOfFilter X) Hbase :
FilterBase base = FilterGenerated base Hbase.
Proof.
simple refine (subtypeEquality_prop (B := λ _, hProppair _ _) _).
apply isapropdirprod.
apply isapropdirprod.
apply isaprop_isfilter_imply.
apply isaprop_isfilter_finite_intersection.
apply isaprop_isfilter_notempty.
simpl.
apply filterbase_genetated.
intros A B.
apply (BaseOfFilter_and base).
apply (BaseOfFilter_notempty base).
Qed.
Lemma FilterBase_Generated_hypothesis {X : UU} (base : BaseOfFilter X) :
∏ L' : Sequence (X → hProp),
(∏ m : stn (length L'), base (L' m))
→ ∃ x : X, finite_intersection L' x.
Proof.
apply filterbase_generated_hypothesis.
intros A B.
apply (BaseOfFilter_and base).
apply (BaseOfFilter_notempty base).
intros A Ha.
now apply (BaseOfFilter_notfalse base).
Qed.
Lemma filterbase_le {X : UU} (base base' : (X → hProp) → hProp) :
(∏ P : X → hProp, base P → ∃ Q : X → hProp, base' Q × (∏ x, Q x → P x))
↔ (∏ P : X → hProp, filterbase base P → filterbase base' P).
Proof.
split.
- intros Hbase P.
apply hinhuniv.
intros A.
generalize (Hbase _ (pr1 (pr2 A))).
apply hinhfun.
intros B.
∃ (pr1 B).
split.
apply (pr1 (pr2 B)).
intros x Bx.
apply (pr2 (pr2 A)), (pr2 (pr2 B)), Bx.
- intros Hbase P Hp.
apply Hbase.
apply hinhpr.
now ∃ P.
Qed.
Lemma PreFilterBase_le {X : UU} (base base' : BaseOfPreFilter X) :
(∏ P : X → hProp, base P → ∃ Q : X → hProp, base' Q × (∏ x, Q x → P x))
↔ filter_le (PreFilterBase base') (PreFilterBase base).
Proof.
split.
- intros Hbase P.
apply (pr1 (filterbase_le base base')), Hbase.
- apply (pr2 (filterbase_le base base')).
Qed.
Lemma FilterBase_le {X : UU} (base base' : BaseOfFilter X) :
(∏ P : X → hProp, base P → ∃ Q : X → hProp, base' Q × (∏ x, Q x → P x))
↔ filter_le (FilterBase base') (FilterBase base).
Proof.
split.
- intros Hbase P.
apply (pr1 (filterbase_le base base')), Hbase.
- apply (pr2 (filterbase_le base base')).
Qed.