Library UniMath.Ktheory.Representation
Require Import UniMath.Foundations.Preamble.
Require Import
UniMath.CategoryTheory.Categories
UniMath.CategoryTheory.opp_precat
UniMath.CategoryTheory.yoneda
UniMath.CategoryTheory.functor_categories
UniMath.CategoryTheory.categories.HSET.Core
UniMath.CategoryTheory.categories.HSET.MonoEpiIso.
Require Import
UniMath.Ktheory.Tactics
UniMath.Ktheory.Precategories
UniMath.Ktheory.Bifunctor.
Require Import UniMath.MoreFoundations.Tactics.
Local Open Scope cat.
Local Open Scope Cat.
Definition isUniversal {C:category} {X:[C^op,SET]} {c:C} (x:c ⇒ X)
:= ∏ (c':C), isweq (λ f : c' --> c, x ⟲ f).
Definition Universal {C:category} (X:[C^op,SET]) (c:C)
:= ∑ (x:c ⇒ X), isUniversal x.
Lemma iso_Universal_weq {C:category} {X Y:[C^op,SET]} (c:C) :
iso X Y → Universal X c ≃ Universal Y c.
Proof.
intro i.
set (I := (functor_iso_pointwise_if_iso
C^op SET (homset_property SET) X Y (pr1 i) (pr2 i))).
unshelve refine (weqbandf _ _ _ _).
- apply hset_iso_equiv_weq. unfold arrow, functor_object_application. exact (I c).
- simpl; intros x. apply weqonsecfibers; intro b. apply weqiff.
+ unshelve refine (twooutof3c_iff_1_homot _ _ _ _ _).
× exact (pr1 i ◽ opp_ob b).
× intro f; unfold funcomp; simpl.
exact (eqtohomot (nat_trans_ax (pr1 i) _ _ f) x).
× exact (hset_iso_is_equiv _ _ (I b)).
+ apply isapropisweq.
+ apply isapropisweq.
Defined.
Definition Representation {C:category} (X:[C^op,SET]) : UU
:= ∑ (c:C), Universal X c.
Definition isRepresentable {C:category} (X:[C^op,SET]) := ∥ Representation X ∥.
Lemma isaprop_Representation {C: univalent_category} (X:[C^op,SET]) :
isaprop (@Representation C X).
Proof.
Abort.
Definition iso_Representation_weq {C:category} {X Y:[C^op,SET]} :
iso X Y → Representation X ≃ Representation Y.
Proof.
intros i. apply weqfibtototal; intro c. apply iso_Universal_weq; assumption.
Defined.
Definition RepresentedFunctor (C:category) : category
:= categoryWithStructure [C^op,SET] Representation.
Definition toRepresentation {C:category} (X : RepresentedFunctor C) :
Representation (pr1 X)
:= pr2 X.
Definition RepresentableFunctor (C:category) : category
:= categoryWithStructure [C^op,SET] isRepresentable.
Definition toRepresentableFunctor {C:category} :
RepresentedFunctor C ⟶ RepresentableFunctor C :=
functorWithStructures (λ c, hinhpr).
Definition makeRepresentation {C:category} {c:C} {X:[C^op,SET]} (x:c ⇒ X) :
(∏ (c':C), UniqueConstruction (λ f : c' --> c, x ⟲ f)) → Representation X.
Proof.
intros bij. ∃ c. ∃ x. intros c'. apply set_bijection_to_weq.
- exact (bij c').
- apply setproperty.
Defined.
Definition universalObject {C:category} {X:[C^op,SET]} (r:Representation X) : C
:= pr1 r.
Definition universalElement {C:category} {X:[C^op,SET]} (r:Representation X) :
universalObject r ⇒ X
:= pr1 (pr2 r).
Coercion universalElement : Representation >-> pr1hSet.
Definition universalProperty {C:category} {X:[C^op,SET]} (r:Representation X) (c:C) :
c --> universalObject r ≃ (c ⇒ X)
:= weqpair (λ f : c --> universalObject r, r ⟲ f)
(pr2 (pr2 r) c).
Definition universalMap {C:category} {X:[C^op,SET]} (r:Representation X) {c:C} :
c ⇒ X → c --> universalObject r
:= invmap (universalProperty _ _).
Notation "r \\ x" := (universalMap r x) (at level 50, left associativity) : cat.
Definition universalMap' {C:category} {X:[C^op^op,SET]} (r:Representation X) {c:C} :
X ⇐ c → c <-- universalObject r
:= invmap (universalProperty _ _).
Notation "x // r" := (universalMap' r x) (at level 50, left associativity) : cat.
Definition universalMapProperty {C:category} {X:[C^op,SET]} (r:Representation X)
{c:C} (x : c ⇒ X) :
r ⟲ (r \\ x) = x
:= homotweqinvweq (universalProperty r c) x.
Definition mapUniqueness {C:category} (X:[C^op,SET]) (r : Representation X) (c:C)
(f g: c --> universalObject r) :
r ⟲ f = r ⟲ g → f = g
:= invmaponpathsweq (universalProperty _ _) _ _.
Definition universalMapUniqueness {C:category} {X:[C^op,SET]} {r:Representation X}
{c:C} (x : c ⇒ X) (f : c --> universalObject r) :
r ⟲ f = x → f = r \\ x
:= pathsweq1 (universalProperty r c) f x.
Definition universalMapIdentity {C:category} {X:[C^op,SET]} (r:Representation X) :
r \\ r = identity _.
Proof. apply pathsinv0. apply universalMapUniqueness. apply arrow_mor_id. Qed.
Definition universalMapUniqueness' {C:category} {X:[C^op,SET]} {r:Representation X}
{c:C} (x : c ⇒ X) (f : c --> universalObject r) :
f = r \\ x → r ⟲ f = x
:= pathsweq1' (universalProperty r c) f x.
Lemma univ_arrow_mor_assoc {C:category} {a b:C} {Z:[C^op,SET]}
(f : a --> b) (z : b ⇒ Z) (t : Representation Z) :
(t \\ z) ∘ f = t \\ (z ⟲ f).
Proof.
apply universalMapUniqueness.
unshelve refine (arrow_mor_mor_assoc _ _ _ @ _).
apply maponpaths.
apply universalMapProperty.
Qed.
Lemma uOF_identity {C:category} {X:[C^op,SET]} (r:Representation X) :
r \\ (identity X ⟳ r) = identity _.
Proof.
unfold nat_trans_id; simpl.
unshelve refine (transportb (λ k, _ \\ k = _) (identityFunction' _ _) _).
apply universalMapIdentity.
Qed.
Lemma uOF_comp {C:category} {X Y Z:[C^op,SET]}
(r:Representation X)
(s:Representation Y)
(t:Representation Z)
(p:X-->Y) (q:Y-->Z) :
t \\ ((q ∘ p) ⟳ r) = (t \\ (q ⟳ s)) ∘ (s \\ (p ⟳ r)).
Proof.
unshelve refine (transportf (λ k, _ \\ k = _) (nattrans_nattrans_arrow_assoc _ _ _) _).
unshelve refine (_ @ !univ_arrow_mor_assoc _ _ _).
apply maponpaths.
unshelve refine (_ @ nattrans_arrow_mor_assoc _ _ _).
apply (maponpaths (λ k, q ⟳ k)).
apply pathsinv0.
apply universalMapProperty.
Qed.
Definition universalObjectFunctor (C:category) : RepresentedFunctor C ⟶ C.
Proof.
unshelve refine (makeFunctor _ _ _ _).
- intro X. exact (universalObject (pr2 X)).
- intros X Y p; simpl. exact (pr2 Y \\ (p ⟳ pr2 X)).
- intros X; simpl. apply uOF_identity.
- intros X Y Z p q; simpl. apply uOF_comp.
Defined.
Definition universalObjectFunctor_on_map (C:category) {X Y:RepresentedFunctor C} (p:X-->Y) :
universalObjectFunctor C ▭ p = pr2 Y \\ (p ⟳ pr2 X).
Proof. reflexivity. Defined.
Lemma universalObjectFunctor_comm (C:category) {X Y:RepresentedFunctor C} (p:X-->Y) :
p ⟳ universalElement (pr2 X) = universalElement (pr2 Y) ⟲ universalObjectFunctor C ▭ p.
Proof.
change (universalObjectFunctor C ▭ p) with (pr2 Y \\ (p ⟳ pr2 X)).
apply pathsinv0, universalMapProperty.
Defined.
Require Import
UniMath.CategoryTheory.Categories
UniMath.CategoryTheory.opp_precat
UniMath.CategoryTheory.yoneda
UniMath.CategoryTheory.functor_categories
UniMath.CategoryTheory.categories.HSET.Core
UniMath.CategoryTheory.categories.HSET.MonoEpiIso.
Require Import
UniMath.Ktheory.Tactics
UniMath.Ktheory.Precategories
UniMath.Ktheory.Bifunctor.
Require Import UniMath.MoreFoundations.Tactics.
Local Open Scope cat.
Local Open Scope Cat.
Definition isUniversal {C:category} {X:[C^op,SET]} {c:C} (x:c ⇒ X)
:= ∏ (c':C), isweq (λ f : c' --> c, x ⟲ f).
Definition Universal {C:category} (X:[C^op,SET]) (c:C)
:= ∑ (x:c ⇒ X), isUniversal x.
Lemma iso_Universal_weq {C:category} {X Y:[C^op,SET]} (c:C) :
iso X Y → Universal X c ≃ Universal Y c.
Proof.
intro i.
set (I := (functor_iso_pointwise_if_iso
C^op SET (homset_property SET) X Y (pr1 i) (pr2 i))).
unshelve refine (weqbandf _ _ _ _).
- apply hset_iso_equiv_weq. unfold arrow, functor_object_application. exact (I c).
- simpl; intros x. apply weqonsecfibers; intro b. apply weqiff.
+ unshelve refine (twooutof3c_iff_1_homot _ _ _ _ _).
× exact (pr1 i ◽ opp_ob b).
× intro f; unfold funcomp; simpl.
exact (eqtohomot (nat_trans_ax (pr1 i) _ _ f) x).
× exact (hset_iso_is_equiv _ _ (I b)).
+ apply isapropisweq.
+ apply isapropisweq.
Defined.
Definition Representation {C:category} (X:[C^op,SET]) : UU
:= ∑ (c:C), Universal X c.
Definition isRepresentable {C:category} (X:[C^op,SET]) := ∥ Representation X ∥.
Lemma isaprop_Representation {C: univalent_category} (X:[C^op,SET]) :
isaprop (@Representation C X).
Proof.
Abort.
Definition iso_Representation_weq {C:category} {X Y:[C^op,SET]} :
iso X Y → Representation X ≃ Representation Y.
Proof.
intros i. apply weqfibtototal; intro c. apply iso_Universal_weq; assumption.
Defined.
Definition RepresentedFunctor (C:category) : category
:= categoryWithStructure [C^op,SET] Representation.
Definition toRepresentation {C:category} (X : RepresentedFunctor C) :
Representation (pr1 X)
:= pr2 X.
Definition RepresentableFunctor (C:category) : category
:= categoryWithStructure [C^op,SET] isRepresentable.
Definition toRepresentableFunctor {C:category} :
RepresentedFunctor C ⟶ RepresentableFunctor C :=
functorWithStructures (λ c, hinhpr).
Definition makeRepresentation {C:category} {c:C} {X:[C^op,SET]} (x:c ⇒ X) :
(∏ (c':C), UniqueConstruction (λ f : c' --> c, x ⟲ f)) → Representation X.
Proof.
intros bij. ∃ c. ∃ x. intros c'. apply set_bijection_to_weq.
- exact (bij c').
- apply setproperty.
Defined.
Definition universalObject {C:category} {X:[C^op,SET]} (r:Representation X) : C
:= pr1 r.
Definition universalElement {C:category} {X:[C^op,SET]} (r:Representation X) :
universalObject r ⇒ X
:= pr1 (pr2 r).
Coercion universalElement : Representation >-> pr1hSet.
Definition universalProperty {C:category} {X:[C^op,SET]} (r:Representation X) (c:C) :
c --> universalObject r ≃ (c ⇒ X)
:= weqpair (λ f : c --> universalObject r, r ⟲ f)
(pr2 (pr2 r) c).
Definition universalMap {C:category} {X:[C^op,SET]} (r:Representation X) {c:C} :
c ⇒ X → c --> universalObject r
:= invmap (universalProperty _ _).
Notation "r \\ x" := (universalMap r x) (at level 50, left associativity) : cat.
Definition universalMap' {C:category} {X:[C^op^op,SET]} (r:Representation X) {c:C} :
X ⇐ c → c <-- universalObject r
:= invmap (universalProperty _ _).
Notation "x // r" := (universalMap' r x) (at level 50, left associativity) : cat.
Definition universalMapProperty {C:category} {X:[C^op,SET]} (r:Representation X)
{c:C} (x : c ⇒ X) :
r ⟲ (r \\ x) = x
:= homotweqinvweq (universalProperty r c) x.
Definition mapUniqueness {C:category} (X:[C^op,SET]) (r : Representation X) (c:C)
(f g: c --> universalObject r) :
r ⟲ f = r ⟲ g → f = g
:= invmaponpathsweq (universalProperty _ _) _ _.
Definition universalMapUniqueness {C:category} {X:[C^op,SET]} {r:Representation X}
{c:C} (x : c ⇒ X) (f : c --> universalObject r) :
r ⟲ f = x → f = r \\ x
:= pathsweq1 (universalProperty r c) f x.
Definition universalMapIdentity {C:category} {X:[C^op,SET]} (r:Representation X) :
r \\ r = identity _.
Proof. apply pathsinv0. apply universalMapUniqueness. apply arrow_mor_id. Qed.
Definition universalMapUniqueness' {C:category} {X:[C^op,SET]} {r:Representation X}
{c:C} (x : c ⇒ X) (f : c --> universalObject r) :
f = r \\ x → r ⟲ f = x
:= pathsweq1' (universalProperty r c) f x.
Lemma univ_arrow_mor_assoc {C:category} {a b:C} {Z:[C^op,SET]}
(f : a --> b) (z : b ⇒ Z) (t : Representation Z) :
(t \\ z) ∘ f = t \\ (z ⟲ f).
Proof.
apply universalMapUniqueness.
unshelve refine (arrow_mor_mor_assoc _ _ _ @ _).
apply maponpaths.
apply universalMapProperty.
Qed.
Lemma uOF_identity {C:category} {X:[C^op,SET]} (r:Representation X) :
r \\ (identity X ⟳ r) = identity _.
Proof.
unfold nat_trans_id; simpl.
unshelve refine (transportb (λ k, _ \\ k = _) (identityFunction' _ _) _).
apply universalMapIdentity.
Qed.
Lemma uOF_comp {C:category} {X Y Z:[C^op,SET]}
(r:Representation X)
(s:Representation Y)
(t:Representation Z)
(p:X-->Y) (q:Y-->Z) :
t \\ ((q ∘ p) ⟳ r) = (t \\ (q ⟳ s)) ∘ (s \\ (p ⟳ r)).
Proof.
unshelve refine (transportf (λ k, _ \\ k = _) (nattrans_nattrans_arrow_assoc _ _ _) _).
unshelve refine (_ @ !univ_arrow_mor_assoc _ _ _).
apply maponpaths.
unshelve refine (_ @ nattrans_arrow_mor_assoc _ _ _).
apply (maponpaths (λ k, q ⟳ k)).
apply pathsinv0.
apply universalMapProperty.
Qed.
Definition universalObjectFunctor (C:category) : RepresentedFunctor C ⟶ C.
Proof.
unshelve refine (makeFunctor _ _ _ _).
- intro X. exact (universalObject (pr2 X)).
- intros X Y p; simpl. exact (pr2 Y \\ (p ⟳ pr2 X)).
- intros X; simpl. apply uOF_identity.
- intros X Y Z p q; simpl. apply uOF_comp.
Defined.
Definition universalObjectFunctor_on_map (C:category) {X Y:RepresentedFunctor C} (p:X-->Y) :
universalObjectFunctor C ▭ p = pr2 Y \\ (p ⟳ pr2 X).
Proof. reflexivity. Defined.
Lemma universalObjectFunctor_comm (C:category) {X Y:RepresentedFunctor C} (p:X-->Y) :
p ⟳ universalElement (pr2 X) = universalElement (pr2 Y) ⟲ universalObjectFunctor C ▭ p.
Proof.
change (universalObjectFunctor C ▭ p) with (pr2 Y \\ (p ⟳ pr2 X)).
apply pathsinv0, universalMapProperty.
Defined.
transferring universal properties between isomorphic objects
Definition isUniversal_isom {C:category} {X:[C^op,SET]} {c c':C}
(x:c ⇒ X) (f : iso c' c) :
isUniversal x ↔ isUniversal (x ⟲ f).
Proof.
Abort.
transferring representability via embeddings and isomorphisms of categories
Definition embeddingRepresentability {C D:category}
{X:[C^op,SET]} {Y:[D^op,SET]}
(s:Representation Y)
(i:categoryEmbedding C D) :
iso (Y □ functorOp (opp_ob (pr1 i))) X →
(∑ c, i c = universalObject s) → Representation X.
Proof.
intros j ce.
apply (iso_Representation_weq j).
∃ (pr1 ce).
∃ (transportf (λ d, Y ◾ d : hSet) (!pr2 ce) s).
intro c'. apply (twooutof3c (# i) (λ g, _ ⟲ g)).
- apply (pr2 i).
- induction (! pr2 ce). exact (weqproperty (universalProperty _ _)).
Defined.
Definition isomorphismRepresentability {C D:category}
{X:[C^op,SET]} {Y:[D^op,SET]}
(s:Representation Y)
(i:categoryIsomorphism C D) :
iso (Y □ functorOp (opp_ob (pr1 (pr1 i)))) X → Representation X
:= λ j, embeddingRepresentability s i j (iscontrpr1 (pr2 i (universalObject s))).
the functor represented by an object
Definition Hom1 {C:category} (c:C) : [C^op,SET].
Proof.
unshelve refine (makeFunctor_op _ _ _ _).
- intro b. exact (Hom C b c).
- intros b a f g; simpl. exact (g ∘ f).
- abstract (intros b; simpl; apply funextsec; intro g; apply id_left) using _L_.
- abstract (intros i j k f g; simpl; apply funextsec; intro h;
rewrite <- assoc; reflexivity) using _L_.
Defined.
Lemma Hom1_Representation {C:category} (c:C) : Representation (Hom1 c).
Proof.
∃ c. ∃ (identity c). intro b. apply (isweqhomot (idweq _)).
- abstract (intro f; unfold arrow_morphism_composition; unfold Hom1, idfun; simpl;
apply pathsinv0, id_right) using _R_.
- abstract (apply weqproperty) using _T_.
Defined.
maps from Hom1 to functors
Lemma compose_SET {X Y Z:SET} (f:X-->Y) (g:Y-->Z) : g∘f = λ x, g(f x).
Proof. reflexivity. Defined.
Definition element_to_nattrans {C:category} (X:[C^op,SET]) (c:C) :
c ⇒ X → Hom1 c --> X.
Proof.
intros x. unshelve refine (makeNattrans_op _ _).
- unfold Hom1; simpl; intros b f. exact (x ⟲ f).
- abstract (intros a b f; apply funextsec; intro g; apply arrow_mor_mor_assoc) using _L_.
Defined.
representable functors are isomorphic to one represented by an object
Theorem Representation_to_iso {C:category} (X:[C^op,SET]) (r:Representation X) :
iso (Hom1 (universalObject r)) X.
Proof.
apply (functor_iso_from_pointwise_iso _ _ _ _ _ (element_to_nattrans X (universalObject r) (universalElement r))).
intro b. apply (pr2 (weq_iff_iso_SET _)). exact (pr2 (pr2 r) b).
Defined.
initial and final objects and zero maps
Definition UnitFunctor (C:category) : [C,SET].
unshelve refine (_,,_).
{ ∃ (λ c, unitset). exact (λ a b f t, t). }
{ split.
{ intros a. reflexivity. }
{ intros a b c f g. reflexivity. } }
Defined.
Definition TerminalObject (C:category) := Representation (UnitFunctor C^op).
Definition terminalObject {C} (t:TerminalObject C) : ob C := universalObject t.
Definition terminalArrow {C} (t:TerminalObject C) (c:ob C) :
Hom C c (terminalObject t)
:= t \\ tt.
Definition InitialObject (C:category) := TerminalObject C^op.
Definition initialObject {C} (i:InitialObject C) : ob C := universalObject i.
Definition initialArrow {C} (i:InitialObject C) (c:ob C) :
Hom C (initialObject i) c
:= rm_opp_mor (tt // i).
Definition init_to_opp {C:category} : InitialObject C → TerminalObject C^op
:= λ i, i.
Definition term_to_opp {C:category} : TerminalObject C → InitialObject C^op.
Proof. intros. unfold InitialObject. now induction (opp_opp_precat C). Defined.
zero objects, as an alternative to ZeroObject.v
Definition ZeroObject (C:category)
:= ∑ z:ob C, Universal (UnitFunctor C^op) z × Universal (UnitFunctor C^op^op) z.
Definition zero_to_terminal (C:category) : ZeroObject C → TerminalObject C
:= λ z, pr1 z ,, pr1 (pr2 z).
Definition zero_to_initial (C:category) : ZeroObject C → InitialObject C
:= λ z, pr1 z ,, pr2 (pr2 z).
Definition zero_opp (C:category) : ZeroObject C → ZeroObject C^op.
Proof.
intro z. induction z as [z k]. ∃ z.
induction (opp_opp_precat C).
exact (pr2 k,,pr1 k).
Defined.
Definition hasZeroObject (C:category) := ∥ ZeroObject C ∥.
Definition haszero_opp (C:category) : hasZeroObject C → hasZeroObject C^op
:= hinhfun (zero_opp C).
Definition zeroMap' (C:category) (a b:ob C) (o:ZeroObject C) : Hom C a b
:= (zero_to_initial C o \\ tt) ∘ (zero_to_terminal C o \\ tt).
Lemma zero_eq_zero_opp (C:category) (a b:ob C) (o:ZeroObject C) :
zeroMap' C^op (opp_ob b) (opp_ob a) (zero_opp C o)
=
opp_mor (zeroMap' C a b o).
Proof.
intros.
try reflexivity.
Abort.
binary products and coproducts
Definition HomPair {C:category} (a b:C) : [C^op,SET].
Proof.
unshelve refine (makeFunctor_op _ _ _ _).
- intro c. exact (Hom C c a × Hom C c b) % set.
- simpl. intros c d f x. exact (pr1 x ∘ f ,, pr2 x ∘ f).
- abstract (simpl; intro c; apply funextsec; intro x;
apply dirprodeq; apply id_left) using _B_.
- abstract (simpl; intros c d e f g;
apply funextsec; intro x;
apply dirprodeq; apply pathsinv0, assoc) using _C_.
Defined.
Definition HomPair_1 {C:category} (a b c:C) :
(((HomPair a b : C^op ⟶ SET) c : hSet) → Hom C c a)
:= pr1.
Definition HomPair_2 {C:category} (a b c:C) :
(((HomPair a b : C^op ⟶ SET) c : hSet) → Hom C c b)
:= pr2.
Definition BinaryProduct {C:category} (a b:C) :=
Representation (HomPair a b).
Definition BinaryProducts (C:category) := ∏ (a b:C), BinaryProduct a b.
Definition pr_1 {C:category} {a b:C} (prod : BinaryProduct a b) :
universalObject prod --> a
:= pr1 (universalElement prod).
Definition pr_2 {C:category} {a b:C} (prod : BinaryProduct a b) :
universalObject prod --> b
:= pr2 (universalElement prod).
Definition binaryProductMap {C:category} {a b:C} (prod : BinaryProduct a b)
{c:C} : c --> a → c --> b → c --> universalObject prod
:= λ f g, prod \\ (f,,g).
Definition binaryProduct_pr_1_eqn {C:category} {a b:C} (prod : BinaryProduct a b)
{c:C} (f : c --> a) (g : c --> b) :
pr_1 prod ∘ binaryProductMap prod f g = f
:= maponpaths (HomPair_1 a b (opp_ob c)) (pr2 (pr1 (pr2 (pr2 prod) c (f,,g)))).
Definition binaryProduct_pr_2_eqn {C:category} {a b:C} (prod : BinaryProduct a b)
{c:C} (f : c --> a) (g : c --> b) :
pr_2 prod ∘ binaryProductMap prod f g = g
:= maponpaths (HomPair_2 a b (opp_ob c)) (pr2 (pr1 (pr2 (pr2 prod) c (f,,g)))).
Lemma binaryProductMapUniqueness {C:category} {a b:C} (prod : BinaryProduct a b)
{c:C} (f g : Hom C c (universalObject prod)) :
pr_1 prod ∘ f = pr_1 prod ∘ g →
pr_2 prod ∘ f = pr_2 prod ∘ g → f = g.
Proof. intros r s. apply mapUniqueness. apply dirprodeq.
exact r. exact s.
Defined.
Definition binaryProductMap_2 {C:category} {a b a' b':C}
(prod : BinaryProduct a b)
(prod' : BinaryProduct a' b')
(f : a --> a')
(g : b --> b')
: rm_opp_ob (universalObject prod) --> rm_opp_ob (universalObject prod').
Proof.
unshelve refine (binaryProductMap _ _ _).
{ exact (f ∘ pr_1 prod). }
{ exact (g ∘ pr_2 prod). }
Defined.
Definition BinarySum {C:category} (a b:C) :=
BinaryProduct (opp_ob a) (opp_ob b).
Definition BinarySums (C:category) := ∏ (a b:C), BinarySum a b.
Lemma binarySumsToProducts {C:category} :
BinarySums C → BinaryProducts C^op.
Proof. intros sum. exact sum. Defined.
Lemma binaryProductToSums {C:category} :
BinaryProducts C → BinarySums C^op.
Proof. intro prod. exact prod. Defined.
Definition in_1 {C:category} {a b:C} (sum : BinarySum a b) :
Hom C a (universalObject sum)
:= pr_1 sum.
Definition in_2 {C:category} {a b:C} (sum : BinarySum a b) :
Hom C b (universalObject sum)
:= pr_2 sum.
Definition binarySumProperty {C:category} {a b c:C} (f:a-->c) (g:b-->c) :=
isUniversal ((f ,, g) : HomPair (opp_ob a) (opp_ob b) ◾ c : hSet).
Definition binarySumMap {C:category} {a b:C} (sum : BinarySum a b)
{c:C} : a --> c → b --> c → rm_opp_ob (universalObject sum) --> c
:= λ f g, rm_opp_mor (sum \\ (opp_mor f,,opp_mor g)).
Definition binarySum_in_1_eqn {C:category} {a b:C} (sum : BinarySum a b)
{c:C} (f : a --> c) (g : b --> c) :
binarySumMap sum f g ∘ in_1 sum = f
:= maponpaths (HomPair_1 (opp_ob a) (opp_ob b) c) ((pr2 (pr1 (pr2 (pr2 sum) c (f,,g))))).
Definition binarySum_in_2_eqn {C:category} {a b:C} (sum : BinarySum a b)
{c:C} (f : a --> c) (g : b --> c) :
binarySumMap sum f g ∘ in_2 sum = g
:= maponpaths (HomPair_2 (opp_ob a) (opp_ob b) c) ((pr2 (pr1 (pr2 (pr2 sum) c (f,,g))))).
Lemma binarySumMapUniqueness {C:category} {a b:C} (sum : BinarySum a b)
{c:C} (f g : Hom C (rm_opp_ob (universalObject sum)) c) :
f ∘ in_1 sum = g ∘ in_1 sum →
f ∘ in_2 sum = g ∘ in_2 sum → f = g.
Proof. intros r s. apply opp_mor_eq, mapUniqueness, dirprodeq; assumption. Defined.
Definition binarySumMap_2 {C:category} {a b a' b':C}
(sum : BinarySum a b)
(sum' : BinarySum a' b')
(f : a --> a')
(g : b --> b')
: rm_opp_ob (universalObject sum) --> rm_opp_ob (universalObject sum').
Proof.
unshelve refine (binarySumMap _ _ _).
{ exact (in_1 sum' ∘ f). }
{ exact (in_2 sum' ∘ g). }
Defined.
products and coproducts
Definition HomFamily (C:category) {I} (c:I → ob C) : C^op ⟶ SET.
Proof.
unshelve refine (_,,_).
- unshelve refine (_,,_).
+ intros x. exact (∏ i, Hom C x (c i)) % set.
+ intros x y f p i; simpl; simpl in p.
exact (compose (C:=C) f (p i)).
- abstract (split;
[ intros a; apply funextsec; intros f; apply funextsec; intros i; simpl;
apply id_left
| intros x y z p q;
apply funextsec; intros f; apply funextsec; intros i; simpl;
apply pathsinv0, assoc]) using _L_.
Defined.
Definition Product {C:category} {I} (c:I → ob C)
:= Representation (HomFamily C c).
Definition pr_ {C:category} {I} {c:I → ob C} (prod : Product c) (i:I) :
universalObject prod --> c i
:= universalElement prod i.
Definition productMapExistence {C:category} {I} {c:I → ob C} (prod : Product c)
{a:C} :
(∏ i, Hom C a (c i)) → Hom C a (universalObject prod)
:= λ f, prod \\ f.
Lemma productMapUniqueness {C:category} {I} {c:I → ob C} (prod : Product c)
{a:C} (f g : Hom C a (universalObject prod)) :
(∏ i, pr_ prod i ∘ f = pr_ prod i ∘ g) → f = g.
Proof.
intro e. apply mapUniqueness. apply funextsec; intro i. apply e.
Defined.
Definition Sum {C:category} {I} (c:I → ob C)
:= Representation (HomFamily C^op c).
Definition in_ {C:category} {I} {c:I → ob C} (sum : Sum c) (i:I) :
c i --> universalObject sum
:= rm_opp_mor (universalElement sum i).
Definition sumMapExistence {C:category} {I} {c:I → ob C} (sum : Sum c)
{a:C} :
(∏ i, Hom C (c i) a) → Hom C (universalObject sum) a
:= λ f, f // sum.
Lemma sumMapUniqueness {C:category} {I} {c:I → ob C} (sum : Sum c)
{a:C} (f g : Hom C (universalObject sum) a) :
(∏ i, f ∘ in_ sum i = g ∘ in_ sum i) → f = g.
Proof.
intro e. apply opp_mor_eq, mapUniqueness. apply funextsec; intro i. apply e.
Defined.
equalizers and coequalizers
Definition Equalization {C:category} {c d:C} (f g:c-->d) :
C^op ⟶ SET.
Proof.
unshelve refine (makeFunctor_op _ _ _ _).
- intro b. unshelve refine (_,,_).
+ exact (∑ p:b --> c, f∘p = g∘p).
+ abstract (apply isaset_total2;
[ apply homset_property
| intro; apply isasetaprop; apply homset_property]) using _L_.
- intros b a e w; simpl in ×. ∃ (pr1 w ∘ e).
abstract (rewrite <- 2? assoc; apply maponpaths; exact (pr2 w)) using _M_.
- abstract (
intros b; apply funextsec; intro w; apply subtypeEquality;
[ intro; apply homset_property
| simpl; apply id_left]) using _N_.
- abstract (
intros a'' a' a r s; apply funextsec;
intro w; apply subtypeEquality;
[ intro; apply homset_property
| apply pathsinv0, assoc ]) using _O_.
Defined.
Definition Equalizer {C:category} {c d:C} (f g:c-->d) :=
Representation (Equalization f g).
Definition equalizerMap {C:category} {c d:C} {f g:c-->d} (eq : Equalizer f g) :
universalObject eq --> c
:= pr1 (universalElement eq).
Definition equalizerEquation {C:category} {c d:C} {f g:c-->d} (eq : Equalizer f g) :
f ∘ equalizerMap eq = g ∘ equalizerMap eq
:= pr2 (universalElement eq).
Definition Coequalizer {C:category} {c d:C} (f g:c-->d) :=
Representation (Equalization (opp_mor f) (opp_mor g)).
Definition coequalizerMap {C:category} {c d:C} {f g:c-->d} (coeq : Coequalizer f g) :
d --> universalObject coeq
:= pr1 (universalElement coeq).
Definition coequalizerEquation {C:category} {c d:C} {f g:c-->d} (coeq : Coequalizer f g) :
coequalizerMap coeq ∘ f = coequalizerMap coeq ∘ g
:= pr2 (universalElement coeq).
pullbacks and pushouts
Definition PullbackCone {C:category} {a b c:C} (f:a-->c) (g:b-->c) :
C^op ⟶ SET.
Proof.
intros.
unshelve refine (makeFunctor_op _ _ _ _).
- intros t. unshelve refine (_,,_).
+ exact (∑ (p: t --> a × t --> b), f ∘ pr1 p = g ∘ pr2 p).
+ abstract (apply isaset_total2;
[ apply isasetdirprod; apply homset_property
| intro; apply isasetaprop; apply homset_property]) using _L_.
- intros t u p w; simpl in ×.
∃ (pr1 (pr1 w) ∘ p,, pr2 (pr1 w) ∘ p).
abstract (
simpl; rewrite <- 2? assoc; apply maponpaths; exact (pr2 w)) using _M_.
- abstract (intros t; simpl; apply funextsec; intro w;
induction w as [w eq]; induction w as [p q];
simpl in *; unshelve refine (two_arg_paths_f _ _);
[ rewrite 2? id_left; reflexivity
| apply proofirrelevance; apply homset_property]) using _N_.
- abstract (
intros r s t p q; simpl in *; apply funextsec; intro w;
unshelve refine (total2_paths2_f _ _);
[ simpl; rewrite 2? assoc; reflexivity
| apply proofirrelevance; apply homset_property]) using _P_.
Defined.
Definition Pullback {C:category} {a b c:C} (f:a-->c) (g:b-->c) :=
Representation (PullbackCone f g).
Definition pb_1 {C:category} {a b c:C} {f:a-->c} {g:b-->c} (pb : Pullback f g) :
universalObject pb --> a
:= pr1 (pr1 (universalElement pb)).
Definition pb_2 {C:category} {a b c:C} {f:a-->c} {g:b-->c} (pb : Pullback f g) :
universalObject pb --> b
:= pr2 (pr1 (universalElement pb)).
Definition pb_eqn {C:category} {a b c:C} {f:a-->c} {g:b-->c} (pb : Pullback f g) :
f ∘ pb_1 pb = g ∘ pb_2 pb
:= pr2 (universalElement pb).
Definition Pushout {C:category} {a b c:C} (f:a-->b) (g:a-->c) :=
Representation (PullbackCone (opp_mor f) (opp_mor g)).
Definition po_1 {C:category} {a b c:C} {f:a-->b} {g:a-->c} (po : Pushout f g) :
b --> universalObject po
:= pr1 (pr1 (universalElement po)).
Definition po_2 {C:category} {a b c:C} {f:a-->b} {g:a-->c} (po : Pushout f g) :
c --> universalObject po
:= pr2 (pr1 (universalElement po)).
Definition po_eqn {C:category} {a b c:C} {f:a-->c} {g:a-->c} (po : Pushout f g) :
po_1 po ∘ f = po_2 po ∘ g
:= pr2 (universalElement po).
kernels and cokernels
Definition Annihilator (C:category) (zero:ZeroMaps C) {c d:C} (f:c --> d) :
C^op ⟶ SET.
Proof.
unshelve refine (_,,_).
{ unshelve refine (_,,_).
{ intro b. ∃ (∑ g:Hom C b c, f ∘ g = pr1 zero b d).
abstract (apply isaset_total2; [ apply setproperty |
intro g; apply isasetaprop; apply homset_property ]) using _L_. }
{ intros a b p ge; simpl.
∃ (pr1 ge ∘ opp_mor p).
{ abstract (
unshelve refine (! assoc _ _ _ @ _); rewrite (pr2 ge);
apply (pr2 (pr2 zero) _ _ _ _)) using _M_. } } }
{ abstract (split;
[ intros x; apply funextsec; intros [r rf0];
apply subtypeEquality;
[ intro; apply homset_property
| simpl; unfold opp_mor; apply id_left ]
| intros w x y t u; apply funextsec; intros [r rf0];
apply subtypeEquality;
[ intro; apply homset_property
| simpl; unfold opp_mor; apply pathsinv0, assoc ] ]) using _N_. }
Defined.
Definition Kernel {C:category} (zero:ZeroMaps C) {c d:ob C} (f:c --> d) :=
Representation (Annihilator C zero f).
Definition Cokernel {C:category} (zero:ZeroMaps C) {c d:ob C} (f:c --> d) :=
Representation (Annihilator C^op (ZeroMaps_opp C zero) f).
Definition kernelMap {C:category} {zero:ZeroMaps C} {c d:ob C} {f:c --> d}
(r : Kernel zero f) : universalObject r --> c
:= pr1 (universalElement r).
Definition kernelEquation {C:category} {zero:ZeroMaps C} {c d:ob C} {f:c --> d}
(ker : Kernel zero f) :
f ∘ kernelMap ker = pr1 zero _ _
:= pr2 (universalElement ker).
Definition cokernelMap {C:category} {zero:ZeroMaps C} {c d:ob C} {f:c --> d}
(r : Cokernel zero f) : d --> universalObject r
:= pr1 (universalElement r).
Definition cokernelEquation {C:category} {zero:ZeroMaps C} {c d:ob C} {f:c --> d}
(coker : Cokernel zero f) :
cokernelMap coker ∘ f = pr1 zero _ _
:= pr2 (universalElement coker).
fibers of maps between functors
Definition fiber {C:category} {X Y:[C^op,SET]} (p : X --> Y) {c:C} (y : c ⇒ Y) :
C^op ⟶ SET.
Proof.
unshelve refine (makeFunctor_op _ _ _ _).
- intro b.
∃ (∑ fx : (b --> c) × (b ⇒ X), p ⟳ pr2 fx = y ⟲ pr1 fx).
abstract (apply isaset_total2;
[ apply isaset_dirprod, setproperty; apply homset_property
| intros [f x]; apply isasetaprop; apply setproperty ]) using _K_.
- simpl; intros b b' g fxe.
∃ (pr1 (pr1 fxe) ∘ g,, pr2 (pr1 fxe) ⟲ g).
abstract (simpl; rewrite nattrans_arrow_mor_assoc, arrow_mor_mor_assoc;
apply maponpaths; exact (pr2 fxe)) using _M_.
- abstract (intro b; apply funextsec; intro w;
induction w as [w e]; induction w as [f x]; simpl;
unshelve refine (two_arg_paths_f _ _);
[ apply dirprodeq; [ apply id_left | apply arrow_mor_id ]
| apply setproperty]) using _R_.
- abstract (intros b b' b'' g g''; apply funextsec; intro w;
induction w as [w e]; induction w as [f x]; simpl;
unshelve refine (total2_paths2_f _ _);
[ apply dirprodeq;
[ apply pathsinv0, assoc | apply arrow_mor_mor_assoc ]
| apply setproperty ]) using _T_.
Defined.
Definition Representation_Map {C:category} {X Y:[C^op,SET]} (p : X --> Y) :=
∏ (c : C) (y : c ⇒ Y), Representation (fiber p y).
Definition isRepresentable_Map {C:category} {X Y:[C^op,SET]} (p : X --> Y) :=
∏ (c : C) (y : c ⇒ Y), isRepresentable (fiber p y).
limits and colimits
Definition cone {I C:category} (c:C) (D: [I,C]) : UU
:= ∑ (φ : ∏ i, Hom C c (D ◾ i)),
∏ i j (e : i --> j), D ▭ e ∘ φ i = φ j.
Lemma cone_eq {C I:category} (c:C^op) (D: I⟶C) (p q:cone (C:=C) c D) :
pr1 p ¬ pr1 q → p = q.
Proof.
intros h. apply subtypeEquality.
{ intro r.
apply impred_isaprop; intro i;
apply impred_isaprop; intro j;
apply impred_isaprop; intro e.
apply homset_property. }
apply funextsec; intro i; apply h.
Qed.
Definition cone_functor {I C:category} : [I,C] ⟶ [C^op,SET].
Proof.
intros.
unshelve refine (_,,_).
{ unshelve refine (_,,_).
{ intros D. unshelve refine (_,,_).
{ unshelve refine (_,,_).
- intro c. ∃ (cone (C:=C) c D).
abstract (
apply isaset_total2;
[ apply impred_isaset; intro i; apply homset_property
| intros φ;
apply impred_isaset; intro i;
apply impred_isaset; intro j;
apply impred_isaset; intro e; apply isasetaprop;
apply homset_property]) using LLL.
- simpl; intros a b f φ.
∃ (λ i, pr1 φ i ∘ f).
abstract (
intros i j e; simpl;
rewrite <- assoc;
apply maponpaths;
apply (pr2 φ)) using _M_. }
{ abstract (split;
[ intro c; simpl;
apply funextsec; intro p;
apply cone_eq;
intro i; simpl;
apply id_left
| intros a b c f g; simpl; apply funextsec; intro p;
apply cone_eq; simpl; intro i; apply pathsinv0, assoc ]) using _N_. } }
{ intros D D' f; simpl.
unshelve refine (_,,_).
- simpl. unfold cone. intros c φ.
unshelve refine (_,,_).
+ intros i. exact (pr1 f i ∘ pr1 φ i).
+ abstract (
simpl; intros i j e; assert (L := pr2 φ i j e); simpl in L;
rewrite <- L; rewrite <- assoc; rewrite <- assoc;
apply maponpaths; apply pathsinv0; apply nat_trans_ax) using _P_.
- abstract (intros a b g; simpl;
apply funextsec; intro p; apply cone_eq; intro i; simpl;
apply pathsinv0, assoc) using _Q_. } }
{ abstract (split;
[ intros D; simpl;
apply nat_trans_eq;
[ exact (homset_property SET)
| intros c; apply funextsec; intro φ; simpl;
apply cone_eq; intro i; apply id_right]
| intros D D' D'' p q; apply nat_trans_eq;
[ apply homset_property
| intro c; apply funextsec; intro K; apply cone_eq; intros i; apply assoc ]]). }
Defined.
Definition cocone_functor {I C:category} : [I,C]^op ⟶ [C^op^op,SET] :=
cone_functor □ functorOp.
Definition Limit {C I:category} (D: I⟶C) := Representation (cone_functor D).
Definition Colimit {C I:category} (D: I⟶C) := Representation (cocone_functor D).
Definition proj_ {C I:category} {D: I⟶C} (lim:Limit D) (i:I) : universalObject lim --> D i.
Proof. intros. exact ((pr1 (universalElement lim) i)). Defined.
Definition inj_ {C I:category} {D: I⟶C} (colim:Colimit D) (i:I) : D i --> universalObject colim.
Proof. intros. exact ((pr1 (universalElement colim) i)). Defined.
Definition proj_comm {C I:category} {D: I⟶C} (lim:Limit D) {i j:I} (f:i-->j) :
# D f ∘ proj_ lim i = proj_ lim j.
Proof. intros. exact (pr2 (universalElement lim) _ _ f). Defined.
Definition inj_comm {C I:category} {D: I⟶C} (colim:Colimit D) {i j:I} (f:i-->j) :
inj_ colim j ∘ # D f = inj_ colim i.
Proof. intros. exact (pr2 (universalElement colim) _ _ f). Defined.
Definition Limits (C:category) := ∏ (I:category) (D: I⟶C), Limit D.
Definition Colimits (C:category) := ∏ (I:category) (D: I⟶C), Colimit D.
Definition lim_functor (C:category) (lim:Limits C) (I:category) :
[I,C] ⟶ C
:= universalObjectFunctor C □ addStructure cone_functor (lim I).
Definition colim_functor (C:category) (colim:Colimits C) (I:category) :
[I,C] ⟶ C
:= functorRmOp (
universalObjectFunctor C^op □ addStructure cocone_functor (colim I)).
Lemma bifunctor_assoc_repn {B C:category} (X : [B, [C^op,SET]]) :
(∏ b, Representation (X ◾ b)) → Representation (bifunctor_assoc X).
Proof.
intro r. set (X' := addStructure X r).
change (categoryWithStructure [C ^op, SET] Representation) with (RepresentedFunctor C) in X'.
set (F := universalObjectFunctor C □ X').
∃ F. unshelve refine (_,,_).
{ unshelve refine (_,,_).
{ intro b. exact (universalElement (r b)). }
{ abstract (intros b b' f; exact (!universalObjectFunctor_comm C (X' ▭ f))) using _K_. } }
{ intro F'. apply UniqueConstruction_to_weq.
split.
{ intro x'. unfold arrow in x'.
unshelve refine (_,,_).
{ unshelve refine (makeNattrans _ _).
{ intro b. exact (r b \\ pr1 x' b). }
{ abstract (intros b b' f; simpl;
unshelve refine (univ_arrow_mor_assoc (F' ▭ f) (pr1 x' b') (r b') @ _);
intermediate_path (r b' \\ (X ▭ f ⟳ pr1 x' b));
[ apply maponpaths, (pr2 x' b b' f)
| unfold F;
rewrite comp_func_on_mor;
rewrite (universalObjectFunctor_on_map C (X' ▭ f));
change (pr2 (X' ◾ b')) with (r b');
change (pr2 (X' ◾ b)) with (r b);
change (X' ▭ f) with (X ▭ f);
unshelve refine (_ @ !univ_arrow_mor_assoc _ _ _);
apply maponpaths;
rewrite <- nattrans_arrow_mor_assoc;
apply (maponpaths (λ k, X ▭ f ⟳ k));
apply pathsinv0;
exact (universalMapProperty (r b) (pr1 x' b)) ]) using _R_. } }
{ abstract (unshelve refine (total2_paths_f _ _);
[ simpl; apply funextsec; intro b; unshelve refine (universalMapProperty _ _)
| apply funextsec; intro b;
apply funextsec; intro b';
apply funextsec; intro f; simpl; apply setproperty ] ) using _L_. } }
{ abstract (intros p q e; apply nat_trans_eq;
[ apply homset_property
| intros b; apply (mapUniqueness _ (r b) _ (p ◽ b) (q ◽ b));
exact (maponpaths (λ k, pr1 k b) e)]) using _M_. } }
Defined.
Theorem functorcategoryTerminalObject (B C:category) :
TerminalObject C → TerminalObject [B,C].
Proof.
intro t.
apply (@iso_Representation_weq _ (bifunctor_assoc (constantFunctor B (UnitFunctor C^op)))).
{ unshelve refine (makeNatiso _ _).
{ intros F. apply hset_equiv_iso.
unfold bifunctor_assoc; simpl.
unshelve refine (weq_iso _ _ _ _).
- intros _. exact tt.
- intros x. unshelve refine (_,,_).
+ unfold θ_1; simpl. intro b. exact tt.
+ eqn_logic.
- simpl. intros w. apply subtypeEquality.
{ intros f. apply impred; intro b; apply impred; intro b'; apply impred; intro g. apply isasetunit. }
apply funextfun; intro b. apply isapropunit.
- eqn_logic. }
{ eqn_logic. } }
{ apply bifunctor_assoc_repn; intro b. exact t. }
Defined.
Goal ∏ B C t b,
universalObject(functorcategoryTerminalObject B C t) ◾ b = universalObject t.
reflexivity.
Defined.
Definition binaryProductFunctor {B C:category} (F G:[B,C]) : [B,[C^op,SET]].
Proof.
unshelve refine (makeFunctor _ _ _ _).
- intro b. exact (HomPair (F ◾ b) (G ◾ b)).
- intros b b' f.
unshelve refine (makeNattrans_op _ _).
+ intros c w. exact (F ▭ f ∘ pr1 w ,, G ▭ f ∘ pr2 w).
+ abstract (intros c c' g; simpl; apply funextsec; intro v;
apply dirprodeq; ( simpl; apply pathsinv0, assoc )) using _L_.
- abstract (intro b; apply nat_trans_eq;
[ apply homset_property
| intro c; simpl;
apply funextsec; intro v;
apply dirprodeq;
( simpl; rewrite functor_on_id; rewrite id_right; reflexivity )]) using _L_.
- abstract (intros b b' b'' f g; apply nat_trans_eq;
[ apply homset_property
| intro c; apply funextsec; intro w; apply dirprodeq ;
( simpl; rewrite functor_on_comp; rewrite assoc; reflexivity) ]) using _L_.
Defined.
Lemma BinaryProductFunctorAssoc {B C : category}
(prod : BinaryProducts C)
(F G : [B, C]) :
iso (bifunctor_assoc (binaryProductFunctor F G)) (HomPair F G).
Proof.
set (ISO := @iso).
unshelve refine (makeNatiso (C := [B, C]^op) _ _).
{ intro H. apply hset_equiv_iso.
unshelve refine (weq_iso _ _ _ _).
{ intros w.
unshelve refine (_,,_).
{ unshelve refine (makeNattrans _ _).
{ intro b. exact (pr1 (pr1 w b)). }
{ abstract (intros b b' f; exact (maponpaths dirprod_pr1 (pr2 w b b' f))) using _L_. } }
{ unshelve refine (makeNattrans _ _).
{ intro b. exact (pr2 (pr1 w b)). }
{ abstract (intros b b' f; exact (maponpaths dirprod_pr2 (pr2 w b b' f))) using _L_. } } }
{ simpl. intros pq.
unshelve refine (_,,_).
{ intros b. exact (pr1 pq b ,, pr2 pq b). }
{ abstract (intros b b' f; simpl;
apply dirprodeq; ( simpl; apply nattrans_naturality )) using _L_. } }
{ abstract (intros w;
unshelve refine (total2_paths_f _ _);
[ apply funextsec; intro b; apply pathsinv0; reflexivity
| (apply funextsec; intro b;
apply funextsec; intro b';
apply funextsec; intro f;
apply isaset_dirprod; apply homset_property) ]) using _M_. }
{ abstract (intros pq; apply dirprodeq;
( apply nat_trans_eq;
[ apply homset_property | intro b; reflexivity ] )) using _L_. } }
{ abstract (intros H H' p;
apply funextsec; intros v;
apply dirprodeq;
( simpl; apply nat_trans_eq;
[ apply homset_property
| intros b; unfold makeNattrans; simpl; reflexivity ] )) using _L_. }
Defined.
Theorem functorBinaryProduct {B C:category} :
BinaryProducts C → BinaryProducts [B,C].
Proof.
intros prod F G. unshelve refine (iso_Representation_weq _ _).
{ exact (bifunctor_assoc (binaryProductFunctor F G)). }
{ now apply BinaryProductFunctorAssoc. }
{ apply bifunctor_assoc_repn. intro b. apply prod. }
Defined.
Lemma functorBinaryProduct_eqn {B C:category} (prod : BinaryProducts C)
(F G : [B,C]) (b:B) :
universalObject (functorBinaryProduct prod F G) ◾ b
=
universalObject (prod (F ◾ b) (G ◾ b)).
Proof. reflexivity. Defined.
Lemma functorBinaryProduct_map_eqn {B C:category} (prod : BinaryProducts C)
(F G F' G' : [B,C]) (p:F-->F') (q:G-->G') (b:B) :
binaryProductMap_2 (functorBinaryProduct prod F G) (functorBinaryProduct prod F' G') p q ◽ b
=
binaryProductMap_2 (prod (F ◾ b) (G ◾ b)) (prod (F' ◾ b) (G' ◾ b)) (p ◽ b) (q ◽ b).
Proof. reflexivity. Defined.
Lemma HomPairOp {B C : category} (F G : [B, C]) :
iso (HomPair (functorOp F) (functorOp G) □ functorOp')
(HomPair (opp_ob F) (opp_ob G)).
Proof.
unshelve refine (makeNatiso _ _).
{ intros H. apply hset_equiv_iso.
apply weqdirprodf; exact (invweq (isomorphismOnMor functorOpIso H _)). }
{ abstract (intros H J p; apply funextsec; intro w;
apply dirprodeq;
( apply nat_trans_eq; [ apply homset_property | reflexivity ] )). }
Defined.
Theorem functorBinarySum {B C:category} :
BinarySums C → BinarySums [B,C].
Proof.
intros sum F G.
exact (isomorphismRepresentability
(functorBinaryProduct (binarySumsToProducts sum)
(functorOp F) (functorOp G))
functorOpIso
(HomPairOp F G)).
Defined.
Lemma functorBinarySum_eqn {B C:category} (sum : BinarySums C)
(F G : [B,C]) (b:B) :
universalObject (functorBinarySum sum F G) ◾ b
=
universalObject (sum (F ◾ b) (G ◾ b)).
Proof. reflexivity. Defined.
Lemma functorBinarySum_map_eqn {B C:category} (sum : BinarySums C)
(F G F' G' : [B,C]) (p:F-->F') (q:G-->G') (b:B) :
binarySumMap_2 (functorBinarySum sum F G) (functorBinarySum sum F' G') p q ◽ b
=
binarySumMap_2 (sum (F ◾ b) (G ◾ b)) (sum (F' ◾ b) (G' ◾ b)) (p ◽ b) (q ◽ b).
Proof.
try reflexivity.
Abort.
Theorem functorLimits (B C:category) : Limits C → Limits [B,C].
Proof.
intros lim I D.
unfold Limits, Limit in lim.
set (D' := bifunctor_comm _ _ _ D).
assert (M := bifunctor_assoc_repn (cone_functor □ D') (λ b, lim I (D' ◾ b))); clear lim.
∃ (universalObject M).
unfold Representation in M.
Abort.
Theorem functorColimits (B C:category) : Colimits C → Colimits [B,C].
Proof.
Abort.