Library UniMath.Combinatorics.Equivalence_Relations
Author: Floris van Doorn, december 2017
Equivalence relations.
Contents:
- construction of the equivalence relation generated by an arbitrary relation, defined as the truncation of paths in a graph
Definition eqrel_closure_hrel {X : UU} (R : hrel X) : hrel X :=
λ x y, ∥ gpaths (symmetric_closure R) x y ∥.
Lemma iseqrel_closure {X : UU} (R : hrel X) : iseqrel (eqrel_closure_hrel R).
Proof.
use iseqrelconstr.
- intros x y z. apply hinhfun2. apply concat.
- intro x. apply hinhpr. apply nil.
- intros x y. apply hinhfun. apply reverse_in_closure.
Defined.
Definition eqrel_closure {X : UU} (R : hrel X) : eqrel X :=
eqrelpair _ (iseqrel_closure R).
Lemma eqrel_closure_minimal {X : UU} {R : hrel X} (S : eqrel X) (H : ∏ x x', R x x' → S x x') {x x' : X} :
eqrel_closure R x x' → S x x'.
Proof.
apply hinhuniv. revert x. apply gpaths_ind.
- apply eqrelrefl.
- intros x y r p HS. refine (eqreltrans S _ _ _ _ HS).
induction r as [r|r].
+ apply H. exact r.
+ apply eqrelsymm. apply H. exact r.
Defined.