Library UniMath.MoreFoundations.Subtypes
Require Export UniMath.MoreFoundations.Notations.
Require Export UniMath.MoreFoundations.Propositions.
Delimit Scope subtype with subtype.
Local Open Scope subtype.
Local Open Scope logic.
Require Export UniMath.MoreFoundations.Propositions.
Delimit Scope subtype with subtype.
Local Open Scope subtype.
Local Open Scope logic.
The powerset, or set of all subsets, of a set.
Definition subtype_set X : hSet := hSetpair (hsubtype X) (isasethsubtype X).
Definition subtype_isIn {X:UU} {S:hsubtype X} (s:S) (T:hsubtype X) : hProp := T (pr1 s).
Notation " s ∈ T " := (subtype_isIn s T) (at level 70) : subtype.
Notation " s ∉ T " := (¬ (subtype_isIn s T) : hProp) (at level 70) : subtype.
Definition subtype_containedIn {X:UU} : hrel (subtype_set X) := λ S T, ∀ x:X, S x ⇒ T x.
Notation " S ⊆ T " := (subtype_containedIn S T) (at level 70) : subtype.
Definition subtype_notContainedIn {X:UU} (S T : hsubtype X) : hProp := ∃ x:X, S x ∧ ¬ (T x).
Definition subtype_inc {X:UU} {S T : hsubtype X} : S ⊆ T → S → T.
Proof.
intros le s. exact (pr1 s,, le (pr1 s) (pr2 s)).
Defined.
Notation " S ⊈ T " := (subtype_notContainedIn S T) (at level 70) : subtype.
Definition subtype_smallerThan {X:UU} (S T : hsubtype X) : hProp := (S ⊆ T) ∧ (T ⊈ S).
Notation " S ⊊ T " := (subtype_smallerThan S T) (at level 70) : subtype.
Local Open Scope logic.
Definition subtype_equal {X:UU} (S T : hsubtype X) : hProp := ∀ x, S x ⇔ T x.
Notation " S ≡ T " := (subtype_equal S T) (at level 70) : subtype.
Definition subtype_notEqual {X:UU} (S T : hsubtype X) : hProp := (S ⊈ T) ∨ (T ⊈ S).
Notation " S ≢ T " := (subtype_notEqual S T) (at level 70) : subtype.
Lemma subtype_notEqual_containedIn {X:UU} (S T : hsubtype X) : S ⊆ T → S ≢ T → T ⊈ S.
Proof.
intros ci ne. apply (squash_to_hProp ne); clear ne; intros [n|n].
- apply (squash_to_hProp n); clear n; intros [x [p q]]. apply fromempty.
change (neg (T x)) in q. apply q; clear q. apply (ci x). exact p.
- exact n.
Defined.
Lemma subtype_notEqual_to_negEqual {X:UU} (S T : hsubtype X) : S ≢ T → ¬ (S ≡ T).
Proof.
intros n. apply (squash_to_prop n).
+ apply isapropneg. + intros [c|c].
× apply (squash_to_prop c).
** apply isapropneg. ** intros [x [Sx nTx]] e. use nTx; clear nTx. exact (pr1 (e x) Sx).
× apply (squash_to_prop c).
** apply isapropneg. ** intros [x [Tx nSx]] e. use nSx; clear nSx. exact (pr2 (e x) Tx).
Defined.
Lemma subtype_notEqual_from_negEqual {X:UU} (S T : hsubtype X) : LEM → (S ≢ T <- ¬ (S ≡ T)).
Proof.
intros lem ne. unfold subtype_equal in ne.
assert (q := negforall_to_existsneg _ lem ne); clear ne.
apply (squash_to_hProp q); clear q; intros [x n].
unfold subtype_notEqual.
assert (r := weak_fromnegdirprod _ _ n); clear n. unfold dneg in r.
assert (s := proof_by_contradiction lem r); clear r.
apply (squash_to_hProp s); clear s. intros s. apply hinhpr. induction s as [s|s].
+ apply ii1, hinhpr. ∃ x. now apply negimpl_to_conj.
+ apply ii2, hinhpr. ∃ x. now apply negimpl_to_conj.
Defined.
Definition subtype_difference {X:UU} (S T : hsubtype X) : hsubtype X := λ x, S x ∧ ¬ (T x).
Notation " S - T " := (subtype_difference S T) : subtype.
Definition subtype_difference_containedIn {X:UU} (S T : hsubtype X) : (S - T) ⊆ S.
Proof.
intros x u. exact (pr1 u).
Defined.
Lemma subtype_equal_cond {X:UU} (S T : hsubtype X) : S ⊆ T ∧ T ⊆ S ⇔ S ≡ T.
Proof.
split.
- intros c x. induction c as [st ts].
split.
+ intro s. exact (st x s).
+ intro t. exact (ts x t).
- intro e. split.
+ intros x s. exact (pr1 (e x) s).
+ intros x t. exact (pr2 (e x) t).
Defined.
Definition subtype_union {X I:UU} (S : I → hsubtype X) : hsubtype X := λ x, ∃ i, S i x.
Notation "⋃ S" := (subtype_union S) (at level 100, no associativity) : subtype.
Definition carrier_set {X : hSet} (S : hsubtype X) : hSet :=
hSetpair (carrier S) (isaset_carrier_subset _ S).
Definition subtype_union_containedIn {X:hSet} {I:UU} (S : I → hsubtype X) i : S i ⊆ ⋃ S
:= λ x s, hinhpr (i,,s).
Definition subtype_isIn {X:UU} {S:hsubtype X} (s:S) (T:hsubtype X) : hProp := T (pr1 s).
Notation " s ∈ T " := (subtype_isIn s T) (at level 70) : subtype.
Notation " s ∉ T " := (¬ (subtype_isIn s T) : hProp) (at level 70) : subtype.
Definition subtype_containedIn {X:UU} : hrel (subtype_set X) := λ S T, ∀ x:X, S x ⇒ T x.
Notation " S ⊆ T " := (subtype_containedIn S T) (at level 70) : subtype.
Definition subtype_notContainedIn {X:UU} (S T : hsubtype X) : hProp := ∃ x:X, S x ∧ ¬ (T x).
Definition subtype_inc {X:UU} {S T : hsubtype X} : S ⊆ T → S → T.
Proof.
intros le s. exact (pr1 s,, le (pr1 s) (pr2 s)).
Defined.
Notation " S ⊈ T " := (subtype_notContainedIn S T) (at level 70) : subtype.
Definition subtype_smallerThan {X:UU} (S T : hsubtype X) : hProp := (S ⊆ T) ∧ (T ⊈ S).
Notation " S ⊊ T " := (subtype_smallerThan S T) (at level 70) : subtype.
Local Open Scope logic.
Definition subtype_equal {X:UU} (S T : hsubtype X) : hProp := ∀ x, S x ⇔ T x.
Notation " S ≡ T " := (subtype_equal S T) (at level 70) : subtype.
Definition subtype_notEqual {X:UU} (S T : hsubtype X) : hProp := (S ⊈ T) ∨ (T ⊈ S).
Notation " S ≢ T " := (subtype_notEqual S T) (at level 70) : subtype.
Lemma subtype_notEqual_containedIn {X:UU} (S T : hsubtype X) : S ⊆ T → S ≢ T → T ⊈ S.
Proof.
intros ci ne. apply (squash_to_hProp ne); clear ne; intros [n|n].
- apply (squash_to_hProp n); clear n; intros [x [p q]]. apply fromempty.
change (neg (T x)) in q. apply q; clear q. apply (ci x). exact p.
- exact n.
Defined.
Lemma subtype_notEqual_to_negEqual {X:UU} (S T : hsubtype X) : S ≢ T → ¬ (S ≡ T).
Proof.
intros n. apply (squash_to_prop n).
+ apply isapropneg. + intros [c|c].
× apply (squash_to_prop c).
** apply isapropneg. ** intros [x [Sx nTx]] e. use nTx; clear nTx. exact (pr1 (e x) Sx).
× apply (squash_to_prop c).
** apply isapropneg. ** intros [x [Tx nSx]] e. use nSx; clear nSx. exact (pr2 (e x) Tx).
Defined.
Lemma subtype_notEqual_from_negEqual {X:UU} (S T : hsubtype X) : LEM → (S ≢ T <- ¬ (S ≡ T)).
Proof.
intros lem ne. unfold subtype_equal in ne.
assert (q := negforall_to_existsneg _ lem ne); clear ne.
apply (squash_to_hProp q); clear q; intros [x n].
unfold subtype_notEqual.
assert (r := weak_fromnegdirprod _ _ n); clear n. unfold dneg in r.
assert (s := proof_by_contradiction lem r); clear r.
apply (squash_to_hProp s); clear s. intros s. apply hinhpr. induction s as [s|s].
+ apply ii1, hinhpr. ∃ x. now apply negimpl_to_conj.
+ apply ii2, hinhpr. ∃ x. now apply negimpl_to_conj.
Defined.
Definition subtype_difference {X:UU} (S T : hsubtype X) : hsubtype X := λ x, S x ∧ ¬ (T x).
Notation " S - T " := (subtype_difference S T) : subtype.
Definition subtype_difference_containedIn {X:UU} (S T : hsubtype X) : (S - T) ⊆ S.
Proof.
intros x u. exact (pr1 u).
Defined.
Lemma subtype_equal_cond {X:UU} (S T : hsubtype X) : S ⊆ T ∧ T ⊆ S ⇔ S ≡ T.
Proof.
split.
- intros c x. induction c as [st ts].
split.
+ intro s. exact (st x s).
+ intro t. exact (ts x t).
- intro e. split.
+ intros x s. exact (pr1 (e x) s).
+ intros x t. exact (pr2 (e x) t).
Defined.
Definition subtype_union {X I:UU} (S : I → hsubtype X) : hsubtype X := λ x, ∃ i, S i x.
Notation "⋃ S" := (subtype_union S) (at level 100, no associativity) : subtype.
Definition carrier_set {X : hSet} (S : hsubtype X) : hSet :=
hSetpair (carrier S) (isaset_carrier_subset _ S).
Definition subtype_union_containedIn {X:hSet} {I:UU} (S : I → hsubtype X) i : S i ⊆ ⋃ S
:= λ x s, hinhpr (i,,s).
Given a family of subtypes of X indexed by a type I, an element x : X is in
their intersection if it is an element of each subtype.
Definition subtype_intersection {X I:UU} (S : I → hsubtype X) : hsubtype X := λ x, ∀ i, S i x.
Notation "⋂ S" := (subtype_intersection S) (at level 100, no associativity) : subtype.
Theorem hsubtype_univalence {X:UU} (S T : hsubtype X) : (S = T) ≃ (S ≡ T).
Proof.
intros. intermediate_weq (∏ x, S x = T x).
- apply weqtoforallpaths.
- unfold subtype_equal. apply weqonsecfibers; intro x.
apply weqlogeq.
Defined.
Theorem hsubtype_rect {X:UU} (S T : hsubtype X) (P : S ≡ T → UU) :
(∏ e : S=T, P (hsubtype_univalence S T e)) ≃ ∏ f, P f.
Proof.
intros. apply weqinvweq, weqonsecbase.
Defined.
Ltac hsubtype_induction f e := generalize f; apply hsubtype_rect; intro e; clear f.
Lemma subtype_containment_isPartialOrder X : isPartialOrder (@subtype_containedIn X).
Proof.
repeat split.
- intros S T U i j x. exact (j x ∘ i x).
- intros S x s. exact s.
- intros S T i j. apply (invmap (hsubtype_univalence S T)). apply subtype_equal_cond.
split; assumption.
Defined.
Lemma subtype_inc_comp {X:UU} {S T U : hsubtype X} (i:S⊆T) (j:T⊆U) (s:S) :
subtype_inc j (subtype_inc i s) = subtype_inc (λ x, j x ∘ i x) s.
Proof.
reflexivity.
Defined.
Lemma subtype_deceq {X} (S:hsubtype X) : isdeceq X → isdeceq (carrier S).
Proof.
intro i. intros s t. induction (i (pr1 s) (pr1 t)) as [eq|ne].
- apply ii1, subtypeEquality_prop, eq.
- apply ii2. intro eq. apply ne. apply maponpaths. exact eq.
Defined.
Definition isDecidablePredicate {X} (S:X→hProp) := ∏ x, decidable (S x).
Definition subtype_plus {X} (S:hsubtype X) (z:X) : hsubtype X := λ x, S x ∨ z = x.
Definition subtype_plus_incl {X} (S:hsubtype X) (z:X) : S ⊆ subtype_plus S z.
Proof.
intros s Ss. now apply hinhpr,ii1.
Defined.
Definition subtype_plus_has_point {X} (S:hsubtype X) (z:X) : subtype_plus S z z.
Proof.
now apply hinhpr, ii2.
Defined.
Definition subtype_plus_in {X} {S:hsubtype X} {z:X} {T:hsubtype X} :
S ⊆ T → T z → subtype_plus S z ⊆ T.
Proof.
intros le Tz x S'x. apply (squash_to_hProp S'x). intros [Sx|e].
- exact (le x Sx).
- induction e. exact Tz.
Defined.