Library UniMath.CategoryTheory.limits.graphs.cokernels
Require Import UniMath.Foundations.PartD.
Require Import UniMath.Foundations.Propositions.
Require Import UniMath.Foundations.Sets.
Require Import UniMath.CategoryTheory.Categories.
Require Import UniMath.CategoryTheory.limits.graphs.limits.
Require Import UniMath.CategoryTheory.limits.graphs.colimits.
Local Open Scope cat.
Require Import UniMath.CategoryTheory.limits.graphs.zero.
Require Import UniMath.CategoryTheory.limits.graphs.coequalizers.
Require Import UniMath.CategoryTheory.limits.cokernels.
Require Import UniMath.Foundations.Propositions.
Require Import UniMath.Foundations.Sets.
Require Import UniMath.CategoryTheory.Categories.
Require Import UniMath.CategoryTheory.limits.graphs.limits.
Require Import UniMath.CategoryTheory.limits.graphs.colimits.
Local Open Scope cat.
Require Import UniMath.CategoryTheory.limits.graphs.zero.
Require Import UniMath.CategoryTheory.limits.graphs.coequalizers.
Require Import UniMath.CategoryTheory.limits.cokernels.
Section def_cokernels.
Variable C : precategory.
Variable hs: has_homsets C.
Variable Z : Zero C.
Definition Cokernel {a b : C} (f : C⟦a, b⟧) := Coequalizer C f (ZeroArrow Z a b).
Variable C : precategory.
Variable hs: has_homsets C.
Variable Z : Zero C.
Definition Cokernel {a b : C} (f : C⟦a, b⟧) := Coequalizer C f (ZeroArrow Z a b).
Lemma equiv_Cokernel1_eq {a b : C} (f : C⟦a, b⟧)
(CK : limits.cokernels.Cokernel (equiv_Zero2 Z) f) :
f · (CokernelArrow CK) = ZeroArrow Z a b · (CokernelArrow CK).
Proof.
rewrite CokernelCompZero. rewrite postcomp_with_ZeroArrow. apply equiv_ZeroArrow.
Qed.
Lemma equiv_Cokernel1_isCoequalizer {a b : C} (f : C⟦a, b⟧)
(CK : limits.cokernels.Cokernel (equiv_Zero2 Z) f) :
isCoequalizer C f (ZeroArrow Z a b) CK (CokernelArrow CK) (equiv_Cokernel1_eq f CK).
Proof.
use (mk_isCoequalizer _ hs).
intros w h H.
use unique_exists.
- use CokernelOut.
+ exact h.
+ rewrite postcomp_with_ZeroArrow in H.
use (pathscomp0 _ (!(equiv_ZeroArrow a w Z))).
exact H.
- use CokernelCommutes.
- intros y. apply hs.
- intros y T. cbn in T.
use CokernelOutsEq. unfold CokernelArrow.
use (pathscomp0 T). apply pathsinv0.
use CokernelCommutes.
Qed.
Definition equiv_Cokernel1 {a b : C} (f : C⟦a, b⟧)
(CK : limits.cokernels.Cokernel (equiv_Zero2 Z) f) : Cokernel f.
Proof.
use mk_Coequalizer.
- exact CK.
- exact (CokernelArrow CK).
- exact (equiv_Cokernel1_eq f CK).
- exact (equiv_Cokernel1_isCoequalizer f CK).
Defined.
Lemma equiv_Cokernel2_eq {a b : C} (f : C⟦a, b⟧) (CK : cokernels.Cokernel (equiv_Zero2 Z) f) :
f · CokernelArrow CK = ZeroArrow Z a b · CokernelArrow CK.
Proof.
rewrite CokernelCompZero. rewrite postcomp_with_ZeroArrow. apply equiv_ZeroArrow.
Qed.
Lemma equiv_Cokernel2_isCoequalizer {a b : C} (f : C⟦a, b⟧)
(CK : cokernels.Cokernel (equiv_Zero2 Z) f) :
isCoequalizer C f (ZeroArrow Z a b) CK (CokernelArrow CK) (equiv_Cokernel2_eq f CK).
Proof.
use (mk_isCoequalizer _ hs).
intros w h H.
use unique_exists.
- use CokernelOut.
+ exact h.
+ use (pathscomp0 H). apply pathsinv0. rewrite postcomp_with_ZeroArrow. apply equiv_ZeroArrow.
- use CokernelCommutes.
- intros y. apply hs.
- intros y T. cbn in T. use CokernelOutsEq. rewrite T. rewrite CokernelCommutes.
apply idpath.
Qed.
Definition equiv_Cokernel2 {a b : C} (f : C⟦a, b⟧)
(CK : limits.cokernels.Cokernel (equiv_Zero2 Z) f) : Cokernel f.
Proof.
use mk_Coequalizer.
- exact CK.
- exact (CokernelArrow CK).
- exact (equiv_Cokernel2_eq f CK).
- exact (equiv_Cokernel2_isCoequalizer f CK).
Defined.
End def_cokernels.
(CK : limits.cokernels.Cokernel (equiv_Zero2 Z) f) :
f · (CokernelArrow CK) = ZeroArrow Z a b · (CokernelArrow CK).
Proof.
rewrite CokernelCompZero. rewrite postcomp_with_ZeroArrow. apply equiv_ZeroArrow.
Qed.
Lemma equiv_Cokernel1_isCoequalizer {a b : C} (f : C⟦a, b⟧)
(CK : limits.cokernels.Cokernel (equiv_Zero2 Z) f) :
isCoequalizer C f (ZeroArrow Z a b) CK (CokernelArrow CK) (equiv_Cokernel1_eq f CK).
Proof.
use (mk_isCoequalizer _ hs).
intros w h H.
use unique_exists.
- use CokernelOut.
+ exact h.
+ rewrite postcomp_with_ZeroArrow in H.
use (pathscomp0 _ (!(equiv_ZeroArrow a w Z))).
exact H.
- use CokernelCommutes.
- intros y. apply hs.
- intros y T. cbn in T.
use CokernelOutsEq. unfold CokernelArrow.
use (pathscomp0 T). apply pathsinv0.
use CokernelCommutes.
Qed.
Definition equiv_Cokernel1 {a b : C} (f : C⟦a, b⟧)
(CK : limits.cokernels.Cokernel (equiv_Zero2 Z) f) : Cokernel f.
Proof.
use mk_Coequalizer.
- exact CK.
- exact (CokernelArrow CK).
- exact (equiv_Cokernel1_eq f CK).
- exact (equiv_Cokernel1_isCoequalizer f CK).
Defined.
Lemma equiv_Cokernel2_eq {a b : C} (f : C⟦a, b⟧) (CK : cokernels.Cokernel (equiv_Zero2 Z) f) :
f · CokernelArrow CK = ZeroArrow Z a b · CokernelArrow CK.
Proof.
rewrite CokernelCompZero. rewrite postcomp_with_ZeroArrow. apply equiv_ZeroArrow.
Qed.
Lemma equiv_Cokernel2_isCoequalizer {a b : C} (f : C⟦a, b⟧)
(CK : cokernels.Cokernel (equiv_Zero2 Z) f) :
isCoequalizer C f (ZeroArrow Z a b) CK (CokernelArrow CK) (equiv_Cokernel2_eq f CK).
Proof.
use (mk_isCoequalizer _ hs).
intros w h H.
use unique_exists.
- use CokernelOut.
+ exact h.
+ use (pathscomp0 H). apply pathsinv0. rewrite postcomp_with_ZeroArrow. apply equiv_ZeroArrow.
- use CokernelCommutes.
- intros y. apply hs.
- intros y T. cbn in T. use CokernelOutsEq. rewrite T. rewrite CokernelCommutes.
apply idpath.
Qed.
Definition equiv_Cokernel2 {a b : C} (f : C⟦a, b⟧)
(CK : limits.cokernels.Cokernel (equiv_Zero2 Z) f) : Cokernel f.
Proof.
use mk_Coequalizer.
- exact CK.
- exact (CokernelArrow CK).
- exact (equiv_Cokernel2_eq f CK).
- exact (equiv_Cokernel2_isCoequalizer f CK).
Defined.
End def_cokernels.