Library UniMath.CategoryTheory.Monads.LModules
**********************************************************
Contents:
Following the scheme of Monads.v
Written by: Ambroise Lafont (November 2016)
- Definition of left modules (LModule R) over a monad R on C
- category of left modules category_LModule R D of range D over a monad R on C
- Tautological left module tautological_LModule : a monad is a module over itself
- Forgetful functor to the category of endofunctors LModule_forget_functor
- Pullback f* M of a module M along a monad morphism f pb_LModule
- Pullback of a module morphism along a monad morphism pb_LModule_Mor
- The pullback functor pb_LModule_functor
- Isomorphisms between modules sharing the same underlying functor and have pointwise equal multiplication LModule_same_func_iso
- Isomorphism between a module and its pullback along the identity morphism pb_LModule_id_iso
- Isomorphism between f*(g*(M)) and (fog)* M, where f and g are monad morphisms and M is a module pb_LModule_comp_iso
Require Import UniMath.Foundations.PartD.
Require Import UniMath.Foundations.Propositions.
Require Import UniMath.Foundations.Sets.
Require Import UniMath.MoreFoundations.Tactics.
Require Import UniMath.CategoryTheory.Categories.
Require Import UniMath.CategoryTheory.functor_categories.
Require Import UniMath.CategoryTheory.whiskering.
Require Import UniMath.CategoryTheory.limits.terminal.
Require Import UniMath.CategoryTheory.limits.bincoproducts.
Require Import UniMath.CategoryTheory.Monads.Monads.
Local Open Scope cat.
Local Notation "F ;;; G" := (nat_trans_comp _ _ _ F G) (at level 35).
Definition of modules over M of codomain D
Section LModule_def.
Definition LModule_data (D:precategory_data) : UU
:= ∑ F : functor B D, F □ M ⟹ F.
Coercion functor_from_LModule_data (C : precategory_data) (F : LModule_data C)
: functor B C := pr1 F.
Definition lm_mult {C : precategory_data} (F : LModule_data C) : F□M ⟹ F := pr2 F.
Local Notation σ := lm_mult.
Definition LModule_laws {C:precategory_data} (T : LModule_data C) : UU :=
(∏ c : B, #T (η M c) · σ T c = identity (T c))
× (∏ c : B, #T ((μ M) c) · σ T c = σ T (M c) · σ T c).
Lemma isaprop_LModule_laws (C : precategory_data) (hs : has_homsets C) (T : LModule_data C) :
isaprop (LModule_laws T).
Proof.
repeat apply isapropdirprod;
apply impred; intro c; apply hs.
Qed.
Definition LModule (C : precategory_data) : UU := ∑ T : LModule_data C, LModule_laws T.
Coercion LModule_data_from_LModule (C : precategory_data) (T : LModule C) : LModule_data C := pr1 T.
Lemma LModule_law1 {C : precategory_data} {T : LModule C} : ∏ c : B, #T (η M c) · σ T c = identity (T c).
Proof.
exact ( (pr1 (pr2 T))).
Qed.
Lemma LModule_law2 {C : precategory_data} {T : LModule C} :
∏ c : B, #T ((μ M) c) · σ T c = σ T (M c) · σ T c.
Proof.
exact (pr2 ( (pr2 T))).
Qed.
End LModule_def.
Section LModule_precategory.
Local Notation σ := lm_mult.
Definition LModule_Mor_laws {C : precategory_data} {T T' : LModule_data C} (α : T ⟹ T')
: UU :=
∏ a : B, α (M a) · σ T' a = σ T a · α a.
Lemma isaprop_LModule_Mor_laws (C : precategory_data) (hs : has_homsets C)
(T T' : LModule_data C) (α : T ⟹ T')
: isaprop (LModule_Mor_laws α).
Proof.
apply impred; intro c; apply hs.
Qed.
Definition LModule_Mor {C : precategory_data} (T T' : LModule C) : UU
:= ∑ α : T ⟹ T', LModule_Mor_laws α.
Coercion nat_trans_from_module_mor (C : precategory_data) (T T' : LModule C) (s : LModule_Mor T T')
: T ⟹ T' := pr1 s.
Definition LModule_Mor_σ {C : precategory_data} {T T' : LModule C} (α : LModule_Mor T T')
: ∏ a : B, α (M a) · σ T' a = σ T a · α a
:= pr2 α.
Lemma LModule_identity_laws {C : precategory} (T : LModule C)
: LModule_Mor_laws (nat_trans_id T).
Proof.
intro x.
now rewrite id_right, id_left.
Qed.
Definition LModule_identity {C : precategory} (T : LModule C)
: LModule_Mor T T := tpair _ _ (LModule_identity_laws T).
Lemma LModule_composition_laws {C : precategory} {T T' T'' : LModule C}
(α : LModule_Mor T T') (α' : LModule_Mor T' T'') : LModule_Mor_laws (nat_trans_comp _ _ _ α α').
Proof.
red;intros; simpl.
unfold nat_trans_from_module_mor.
rewrite assoc.
etrans; revgoals.
apply cancel_postcomposition.
apply (LModule_Mor_σ α a).
rewrite <- !assoc.
apply cancel_precomposition.
apply (LModule_Mor_σ α' a).
Qed.
Definition LModule_composition {C : precategory} {T T' T'' : LModule C}
(α : LModule_Mor T T') (α' : LModule_Mor T' T'')
: LModule_Mor T T'' := tpair _ _ (LModule_composition_laws α α').
Definition LModule_Mor_equiv {C : precategory_data} (hs : has_homsets C)
{T T' : LModule C} (α β : LModule_Mor T T')
: α = β ≃ (pr1 α = pr1 β).
Proof.
apply subtypeInjectivity; intro a.
apply isaprop_LModule_Mor_laws, hs.
Defined.
Definition precategory_LModule_ob_mor (C : precategory_data) : precategory_ob_mor.
Proof.
∃ (LModule C).
exact (λ T T' : LModule C, LModule_Mor T T').
Defined.
Definition precategory_LModule_data (C : precategory) : precategory_data.
Proof.
∃ (precategory_LModule_ob_mor C).
∃ (@LModule_identity C).
exact (@LModule_composition C).
Defined.
Lemma precategory_LModule_axioms (C : precategory) (hs : has_homsets C)
: is_precategory (precategory_LModule_data C).
Proof.
repeat split; simpl; intros.
- apply (invmap (LModule_Mor_equiv hs _ _ )).
apply (@id_left (functor_precategory B C hs)).
- apply (invmap (LModule_Mor_equiv hs _ _ )).
apply (@id_right (functor_precategory B C hs)).
- apply (invmap (LModule_Mor_equiv hs _ _ )).
apply (@assoc (functor_precategory B C hs)).
- apply (invmap (LModule_Mor_equiv hs _ _ )).
apply (@assoc' (functor_precategory B C hs)).
Qed.
Definition precategory_LModule (C : category) : precategory
:= tpair _ _ (precategory_LModule_axioms C (homset_property C)).
Lemma has_homsets_LModule (C : category) :
has_homsets (precategory_LModule C).
Proof.
intros F G.
apply isaset_total2 .
- apply isaset_nat_trans.
apply homset_property.
- intros m.
apply isasetaprop.
apply isaprop_LModule_Mor_laws.
apply homset_property.
Qed.
Definition category_LModule (C : category) : category :=
(precategory_LModule C,, has_homsets_LModule C).
End LModule_precategory.
Local Notation σ := lm_mult.
Definition LModule_Mor_laws {C : precategory_data} {T T' : LModule_data C} (α : T ⟹ T')
: UU :=
∏ a : B, α (M a) · σ T' a = σ T a · α a.
Lemma isaprop_LModule_Mor_laws (C : precategory_data) (hs : has_homsets C)
(T T' : LModule_data C) (α : T ⟹ T')
: isaprop (LModule_Mor_laws α).
Proof.
apply impred; intro c; apply hs.
Qed.
Definition LModule_Mor {C : precategory_data} (T T' : LModule C) : UU
:= ∑ α : T ⟹ T', LModule_Mor_laws α.
Coercion nat_trans_from_module_mor (C : precategory_data) (T T' : LModule C) (s : LModule_Mor T T')
: T ⟹ T' := pr1 s.
Definition LModule_Mor_σ {C : precategory_data} {T T' : LModule C} (α : LModule_Mor T T')
: ∏ a : B, α (M a) · σ T' a = σ T a · α a
:= pr2 α.
Lemma LModule_identity_laws {C : precategory} (T : LModule C)
: LModule_Mor_laws (nat_trans_id T).
Proof.
intro x.
now rewrite id_right, id_left.
Qed.
Definition LModule_identity {C : precategory} (T : LModule C)
: LModule_Mor T T := tpair _ _ (LModule_identity_laws T).
Lemma LModule_composition_laws {C : precategory} {T T' T'' : LModule C}
(α : LModule_Mor T T') (α' : LModule_Mor T' T'') : LModule_Mor_laws (nat_trans_comp _ _ _ α α').
Proof.
red;intros; simpl.
unfold nat_trans_from_module_mor.
rewrite assoc.
etrans; revgoals.
apply cancel_postcomposition.
apply (LModule_Mor_σ α a).
rewrite <- !assoc.
apply cancel_precomposition.
apply (LModule_Mor_σ α' a).
Qed.
Definition LModule_composition {C : precategory} {T T' T'' : LModule C}
(α : LModule_Mor T T') (α' : LModule_Mor T' T'')
: LModule_Mor T T'' := tpair _ _ (LModule_composition_laws α α').
Definition LModule_Mor_equiv {C : precategory_data} (hs : has_homsets C)
{T T' : LModule C} (α β : LModule_Mor T T')
: α = β ≃ (pr1 α = pr1 β).
Proof.
apply subtypeInjectivity; intro a.
apply isaprop_LModule_Mor_laws, hs.
Defined.
Definition precategory_LModule_ob_mor (C : precategory_data) : precategory_ob_mor.
Proof.
∃ (LModule C).
exact (λ T T' : LModule C, LModule_Mor T T').
Defined.
Definition precategory_LModule_data (C : precategory) : precategory_data.
Proof.
∃ (precategory_LModule_ob_mor C).
∃ (@LModule_identity C).
exact (@LModule_composition C).
Defined.
Lemma precategory_LModule_axioms (C : precategory) (hs : has_homsets C)
: is_precategory (precategory_LModule_data C).
Proof.
repeat split; simpl; intros.
- apply (invmap (LModule_Mor_equiv hs _ _ )).
apply (@id_left (functor_precategory B C hs)).
- apply (invmap (LModule_Mor_equiv hs _ _ )).
apply (@id_right (functor_precategory B C hs)).
- apply (invmap (LModule_Mor_equiv hs _ _ )).
apply (@assoc (functor_precategory B C hs)).
- apply (invmap (LModule_Mor_equiv hs _ _ )).
apply (@assoc' (functor_precategory B C hs)).
Qed.
Definition precategory_LModule (C : category) : precategory
:= tpair _ _ (precategory_LModule_axioms C (homset_property C)).
Lemma has_homsets_LModule (C : category) :
has_homsets (precategory_LModule C).
Proof.
intros F G.
apply isaset_total2 .
- apply isaset_nat_trans.
apply homset_property.
- intros m.
apply isasetaprop.
apply isaprop_LModule_Mor_laws.
apply homset_property.
Qed.
Definition category_LModule (C : category) : category :=
(precategory_LModule C,, has_homsets_LModule C).
End LModule_precategory.
Any monad is a left module over itself
Definition tautological_LModule_data : LModule_data B := ((M:functor _ _) ,, μ M).
Lemma tautological_LModule_law : LModule_laws tautological_LModule_data.
Proof.
split; intro c.
- apply Monad_law2.
- apply Monad_law3.
Qed.
Definition tautological_LModule : LModule B :=
(tautological_LModule_data ,, tautological_LModule_law).
End LModule_over_monad.
Lemma tautological_LModule_law : LModule_laws tautological_LModule_data.
Proof.
split; intro c.
- apply Monad_law2.
- apply Monad_law3.
Qed.
Definition tautological_LModule : LModule B :=
(tautological_LModule_data ,, tautological_LModule_law).
End LModule_over_monad.
The forgetful functor from the category of left modules to the category of
endofunctors
Section ForgetLModFunctor.
Context {B : precategory} (R : Monad B) (C : category).
Local Notation MOD := (precategory_LModule R C).
Definition LModule_forget_functor_data : functor_data MOD [B,C] :=
mk_functor_data (C := MOD) (C' := [B,C])
(fun X ⇒ ((X : LModule _ _): functor _ _))
(fun a b f ⇒ ((f : LModule_Mor _ _ _) : nat_trans _ _)).
Definition LModule_forget_is_functor : is_functor LModule_forget_functor_data :=
(( fun x ⇒ idpath _) : functor_idax LModule_forget_functor_data)
,, ((fun a b c f g ⇒ idpath _) : functor_compax LModule_forget_functor_data).
Definition LModule_forget_functor: functor MOD [B,C] :=
mk_functor LModule_forget_functor_data LModule_forget_is_functor.
End ForgetLModFunctor.
Context {B : precategory} (R : Monad B) (C : category).
Local Notation MOD := (precategory_LModule R C).
Definition LModule_forget_functor_data : functor_data MOD [B,C] :=
mk_functor_data (C := MOD) (C' := [B,C])
(fun X ⇒ ((X : LModule _ _): functor _ _))
(fun a b f ⇒ ((f : LModule_Mor _ _ _) : nat_trans _ _)).
Definition LModule_forget_is_functor : is_functor LModule_forget_functor_data :=
(( fun x ⇒ idpath _) : functor_idax LModule_forget_functor_data)
,, ((fun a b c f g ⇒ idpath _) : functor_compax LModule_forget_functor_data).
Definition LModule_forget_functor: functor MOD [B,C] :=
mk_functor LModule_forget_functor_data LModule_forget_is_functor.
End ForgetLModFunctor.
Let m : M -> M' a monad morphism.
m induces a functor m* between the category of left modules over M' and the category of
left modules over M
If T is a module over M', we call m* T the pullback module of T along m
Section Pullback_module.
Context {B: precategory_data} {M M': Monad B} (m: Monad_Mor M M').
Context {C: precategory}.
Variable (T:LModule M' C).
Notation "Z ∘ α" := (post_whisker α Z).
Local Notation σ := lm_mult.
Definition pb_LModule_σ : T □ M ⟹ T := nat_trans_comp _ _ _ (T ∘ m) (σ _ T).
Definition pb_LModule_data : ∑ F : functor B C, F □ M ⟹ F :=
tpair _ (T:functor B C) pb_LModule_σ.
Lemma pb_LModule_laws : LModule_laws M pb_LModule_data.
Proof.
split.
- intro c.
cbn.
rewrite <- (LModule_law1 _ (T:=T)).
rewrite <- (Monad_Mor_η m).
rewrite functor_comp.
apply assoc.
- simpl.
intro c.
rewrite assoc.
rewrite <- (functor_comp T).
etrans.
apply cancel_postcomposition.
apply maponpaths.
apply Monad_Mor_μ.
rewrite functor_comp.
rewrite <- assoc.
etrans.
apply cancel_precomposition.
apply LModule_law2.
repeat rewrite functor_comp.
etrans.
rewrite <- assoc.
apply cancel_precomposition.
rewrite assoc.
apply cancel_postcomposition.
apply (nat_trans_ax (σ M' T)).
now repeat rewrite assoc.
Qed.
Definition pb_LModule : LModule M C := tpair _ _ pb_LModule_laws.
End Pullback_module.
Context {B: precategory_data} {M M': Monad B} (m: Monad_Mor M M').
Context {C: precategory}.
Variable (T:LModule M' C).
Notation "Z ∘ α" := (post_whisker α Z).
Local Notation σ := lm_mult.
Definition pb_LModule_σ : T □ M ⟹ T := nat_trans_comp _ _ _ (T ∘ m) (σ _ T).
Definition pb_LModule_data : ∑ F : functor B C, F □ M ⟹ F :=
tpair _ (T:functor B C) pb_LModule_σ.
Lemma pb_LModule_laws : LModule_laws M pb_LModule_data.
Proof.
split.
- intro c.
cbn.
rewrite <- (LModule_law1 _ (T:=T)).
rewrite <- (Monad_Mor_η m).
rewrite functor_comp.
apply assoc.
- simpl.
intro c.
rewrite assoc.
rewrite <- (functor_comp T).
etrans.
apply cancel_postcomposition.
apply maponpaths.
apply Monad_Mor_μ.
rewrite functor_comp.
rewrite <- assoc.
etrans.
apply cancel_precomposition.
apply LModule_law2.
repeat rewrite functor_comp.
etrans.
rewrite <- assoc.
apply cancel_precomposition.
rewrite assoc.
apply cancel_postcomposition.
apply (nat_trans_ax (σ M' T)).
now repeat rewrite assoc.
Qed.
Definition pb_LModule : LModule M C := tpair _ _ pb_LModule_laws.
End Pullback_module.
Section Pullback_Module_Morphism.
Context {B: precategory_data} {M M': Monad B} (m: Monad_Mor M M') {C: precategory} {T T': LModule M' C}
(n: LModule_Mor _ T T').
Local Notation pbmT := (pb_LModule m T).
Local Notation pbmT' := (pb_LModule m T').
Lemma pb_LModule_Mor_law : LModule_Mor_laws M (T:=pbmT) (T':=pbmT') n.
Proof.
intros b.
cbn.
eapply pathscomp0; revgoals.
- rewrite <-assoc.
apply cancel_precomposition.
apply LModule_Mor_σ.
- repeat rewrite assoc.
apply cancel_postcomposition.
apply pathsinv0.
apply nat_trans_ax.
Qed.
Definition pb_LModule_Mor : LModule_Mor _ pbmT pbmT' := (_ ,, pb_LModule_Mor_law).
End Pullback_Module_Morphism.
Context {B: precategory_data} {M M': Monad B} (m: Monad_Mor M M') {C: precategory} {T T': LModule M' C}
(n: LModule_Mor _ T T').
Local Notation pbmT := (pb_LModule m T).
Local Notation pbmT' := (pb_LModule m T').
Lemma pb_LModule_Mor_law : LModule_Mor_laws M (T:=pbmT) (T':=pbmT') n.
Proof.
intros b.
cbn.
eapply pathscomp0; revgoals.
- rewrite <-assoc.
apply cancel_precomposition.
apply LModule_Mor_σ.
- repeat rewrite assoc.
apply cancel_postcomposition.
apply pathsinv0.
apply nat_trans_ax.
Qed.
Definition pb_LModule_Mor : LModule_Mor _ pbmT pbmT' := (_ ,, pb_LModule_Mor_law).
End Pullback_Module_Morphism.
The pullback functor
A monad morphism f : R -> S induces a functor between the category of modules over S
and the category of modules over R.
Section PbmFunctor.
Context {B : precategory} {C : category} {R S : Monad B} (f : Monad_Mor R S).
Let MOD (R : Monad B) := (precategory_LModule R C).
Definition pb_LModule_functor_data : functor_data (MOD S) (MOD R) :=
mk_functor_data (C := MOD S) (C' := MOD R) (pb_LModule f )
(@pb_LModule_Mor _ _ _ f _).
Lemma pb_LModule_is_functor : is_functor pb_LModule_functor_data.
Proof.
split.
- intro M.
apply LModule_Mor_equiv;[apply homset_property|]; apply idpath.
- intros X Y Z u v.
apply LModule_Mor_equiv;[apply homset_property|]; apply idpath.
Qed.
Definition pb_LModule_functor : functor (MOD S) (MOD R) :=
mk_functor _ pb_LModule_is_functor.
End PbmFunctor.
Context {B : precategory} {C : category} {R S : Monad B} (f : Monad_Mor R S).
Let MOD (R : Monad B) := (precategory_LModule R C).
Definition pb_LModule_functor_data : functor_data (MOD S) (MOD R) :=
mk_functor_data (C := MOD S) (C' := MOD R) (pb_LModule f )
(@pb_LModule_Mor _ _ _ f _).
Lemma pb_LModule_is_functor : is_functor pb_LModule_functor_data.
Proof.
split.
- intro M.
apply LModule_Mor_equiv;[apply homset_property|]; apply idpath.
- intros X Y Z u v.
apply LModule_Mor_equiv;[apply homset_property|]; apply idpath.
Qed.
Definition pb_LModule_functor : functor (MOD S) (MOD R) :=
mk_functor _ pb_LModule_is_functor.
End PbmFunctor.
Construction of an isomorphism between modules sharing the same underlying
functor and have pointwise equal multiplication LModule_M1_M2_iso
Module morphism between two modules sharing the same functor F
and having pointwise equal multiplication
Lemma LModule_same_func_Mor_laws
{m1 m2 : R ∙ F ⟹ F }
(hm : ∏ c, m1 c = m2 c)
:
LModule_Mor_laws R (T := (F ,, m1)) (T' := (F ,, m2)) (nat_trans_id _).
Proof.
intro c.
etrans;[apply id_left|].
apply pathsinv0.
etrans;[apply ( (id_right _))|].
apply hm.
Qed.
Definition LModule_same_func_Mor
{m1 m2 : R ∙ F ⟹ F }
(hm : ∏ c, m1 c = m2 c)
(m1_law : LModule_laws _ (F ,, m1))
(m2_law : LModule_laws _ (F ,, m2))
(M1 : LModule _ _ := _ ,, m1_law)
(M2 : LModule _ _ := _ ,, m2_law)
:
LModule_Mor R M1 M2 :=
_ ,, LModule_same_func_Mor_laws hm .
Context {m1 m2 : R ∙ F ⟹ F }.
Let F_data1 : LModule_data _ _ := F ,, m1.
Let F_data2 : LModule_data _ _ := F ,, m2.
Context (m1_law : LModule_laws _ F_data1).
Context (m2_law : LModule_laws _ F_data2).
{m1 m2 : R ∙ F ⟹ F }
(hm : ∏ c, m1 c = m2 c)
:
LModule_Mor_laws R (T := (F ,, m1)) (T' := (F ,, m2)) (nat_trans_id _).
Proof.
intro c.
etrans;[apply id_left|].
apply pathsinv0.
etrans;[apply ( (id_right _))|].
apply hm.
Qed.
Definition LModule_same_func_Mor
{m1 m2 : R ∙ F ⟹ F }
(hm : ∏ c, m1 c = m2 c)
(m1_law : LModule_laws _ (F ,, m1))
(m2_law : LModule_laws _ (F ,, m2))
(M1 : LModule _ _ := _ ,, m1_law)
(M2 : LModule _ _ := _ ,, m2_law)
:
LModule_Mor R M1 M2 :=
_ ,, LModule_same_func_Mor_laws hm .
Context {m1 m2 : R ∙ F ⟹ F }.
Let F_data1 : LModule_data _ _ := F ,, m1.
Let F_data2 : LModule_data _ _ := F ,, m2.
Context (m1_law : LModule_laws _ F_data1).
Context (m2_law : LModule_laws _ F_data2).
The multiplication are pointwise equal
Context (hm : ∏ c, m1 c = m2 c).
Let M1 : LModule _ _ := _ ,, m1_law.
Let M2 : LModule _ _ := _ ,, m2_law.
Let M1 : LModule _ _ := _ ,, m1_law.
Let M2 : LModule _ _ := _ ,, m2_law.
Isomorphism between M1 and M2
Lemma LModule_same_func_Mor_is_inverse hsC :
is_inverse_in_precat (C := precategory_LModule R (category_pair C hsC) )
(LModule_same_func_Mor hm m1_law m2_law)
(LModule_same_func_Mor (fun c ⇒ ! (hm c)) m2_law m1_law).
Proof.
use mk_is_inverse_in_precat.
- apply LModule_Mor_equiv;[ apply homset_property|].
apply (id_left (C := [B ,C , hsC])).
- apply LModule_Mor_equiv;[ apply homset_property|].
apply (id_right (C := [B ,C , hsC])).
Qed.
Definition LModule_same_func_iso hsC : iso (C := precategory_LModule R (category_pair C hsC) )
M1 M2.
Proof.
eapply isopair.
eapply is_iso_from_is_z_iso.
eapply mk_is_z_isomorphism.
apply LModule_same_func_Mor_is_inverse.
Defined.
End IsoLModPb.
is_inverse_in_precat (C := precategory_LModule R (category_pair C hsC) )
(LModule_same_func_Mor hm m1_law m2_law)
(LModule_same_func_Mor (fun c ⇒ ! (hm c)) m2_law m1_law).
Proof.
use mk_is_inverse_in_precat.
- apply LModule_Mor_equiv;[ apply homset_property|].
apply (id_left (C := [B ,C , hsC])).
- apply LModule_Mor_equiv;[ apply homset_property|].
apply (id_right (C := [B ,C , hsC])).
Qed.
Definition LModule_same_func_iso hsC : iso (C := precategory_LModule R (category_pair C hsC) )
M1 M2.
Proof.
eapply isopair.
eapply is_iso_from_is_z_iso.
eapply mk_is_z_isomorphism.
apply LModule_same_func_Mor_is_inverse.
Defined.
End IsoLModPb.
Let T be a module on M'.
In this section, we construct the module morphism T -> id* T (which is
actully an iso) where id* T is the pullback module of T along
the identity morphism in M'.
and also the morphism id* T -> T
Section Pullback_Identity_Module.
Context {B : precategory} {M' : Monad B} {C : precategory} {T : LModule M' C}.
Local Notation pbmid := (pb_LModule (Monad_identity M') T).
Lemma pbm_id_law :
∏ c : B, (lm_mult _ T) c = (pb_LModule_σ (Monad_identity M') T) c.
Proof.
intro c.
cbn.
apply pathsinv0.
etrans;[|apply id_left].
apply cancel_postcomposition.
apply functor_id.
Qed.
Definition pb_LModule_id_iso hsC : iso (C := precategory_LModule _ (C ,, hsC)) T pbmid :=
LModule_same_func_iso _ _ pbm_id_law hsC.
End Pullback_Identity_Module.
Context {B : precategory} {M' : Monad B} {C : precategory} {T : LModule M' C}.
Local Notation pbmid := (pb_LModule (Monad_identity M') T).
Lemma pbm_id_law :
∏ c : B, (lm_mult _ T) c = (pb_LModule_σ (Monad_identity M') T) c.
Proof.
intro c.
cbn.
apply pathsinv0.
etrans;[|apply id_left].
apply cancel_postcomposition.
apply functor_id.
Qed.
Definition pb_LModule_id_iso hsC : iso (C := precategory_LModule _ (C ,, hsC)) T pbmid :=
LModule_same_func_iso _ _ pbm_id_law hsC.
End Pullback_Identity_Module.
In this section, we construct the isomorphism between
m*(m'*(T'')) and (m o m')*(T'') where m and m' are monad
morphisms, and T'' is a left module.
Section Pullback_Composition.
Context {B : precategory} {M M' : Monad B} (m : Monad_Mor M M') {C : precategory}
{M'' : Monad B} (m' : Monad_Mor M' M'') (T'' : LModule M'' C).
Local Notation comp_pbm := (pb_LModule m (pb_LModule m' T'')).
Local Notation pbm_comp := (pb_LModule (Monad_composition m m') T'').
Lemma pb_LModule_comp_law (c : B) :
(pb_LModule_σ m (pb_LModule m' T'')) c = (pb_LModule_σ (Monad_composition m m') T'') c.
Proof.
cbn.
etrans; [apply assoc|].
apply cancel_postcomposition.
apply pathsinv0.
apply functor_comp.
Qed.
Definition pb_LModule_comp_iso hsC : iso (C := category_LModule _ (category_pair C hsC)) comp_pbm pbm_comp :=
LModule_same_func_iso _ _ pb_LModule_comp_law hsC.
End Pullback_Composition.