Library UniMath.CategoryTheory.Monads.KTriples
Require Import UniMath.Foundations.PartD.
Require Import UniMath.Foundations.Propositions.
Require Import UniMath.Foundations.Sets.
Require Import UniMath.MoreFoundations.Tactics.
Require Import UniMath.CategoryTheory.Categories.
Require Import UniMath.CategoryTheory.functor_categories.
Require Import UniMath.CategoryTheory.whiskering.
Require Import UniMath.CategoryTheory.Monads.Monads.
Require Import UniMath.CategoryTheory.Monads.RelativeMonads.
Local Open Scope cat.
Ltac pathvia b := (apply (@pathscomp0 _ _ b _ )).
Section Kleisli_defn.
Context {C : precategory_data}.
Definition Kleisli_Data : UU := ∑ T : C → C,
(∏ a : C, a --> T a) × (∏ a b : C, (a --> T b) → (T a --> T b)).
Definition Kleisli_Data_ob (T: Kleisli_Data) (c : C) : C := pr1 T c.
Coercion Kleisli_Data_ob : Kleisli_Data >-> Funclass.
Definition η (T : Kleisli_Data) : ∏ a : C, a --> T a := pr1 (pr2 T).
Definition bind (T : Kleisli_Data) {a b : C} :
C⟦a,T b⟧ → C⟦T a,T b⟧ := pr2 (pr2 T) a b.
Definition Kleisli_Laws (T : Kleisli_Data) :=
(∏ a, bind T (η T a) = identity (T a)) ×
(∏ a b (f : C⟦a,T b⟧), bind T f ∘ η T a = f) ×
(∏ a b c (f : C⟦a,T b⟧) (g : C⟦b,T c⟧), bind T g ∘ bind T f = bind T (bind T g ∘ f)).
Lemma isaprop_Kleisli_Laws (hs : has_homsets C) (T : Kleisli_Data) :
isaprop (Kleisli_Laws T).
Proof.
repeat apply isapropdirprod; repeat (apply impred_isaprop; intros); apply hs.
Defined.
Definition bind_bind {T : Kleisli_Data} (H: Kleisli_Laws T) :
∏ a b c (f : C⟦a,T b⟧) (g : C⟦b,T c⟧), bind T g ∘ bind T f = bind T (bind T g ∘ f) :=
pr2 (pr2 H).
Definition bind_η {T : Kleisli_Data} (H : Kleisli_Laws T) :
∏ a b (f : C⟦a,T b⟧), bind T f ∘ η T a = f := pr1 (pr2 H).
Definition η_bind {T : Kleisli_Data} (H : Kleisli_Laws T) :
∏ a, bind T (η T a) = identity (T a) := pr1 H.
Definition Kleisli: UU :=
∑ (T : Kleisli_Data), Kleisli_Laws T.
Coercion Kleisli_Data_from_Kleisli (T : Kleisli) : Kleisli_Data := pr1 T.
Lemma Kleisli_is_rel_monad: Kleisli = RelMonad (functor_identity C).
Proof.
apply idpath.
Qed.
Coercion kleisli_laws (T : Kleisli) : Kleisli_Laws (pr1 T) := pr2 T.
End Kleisli_defn.
Arguments Kleisli: clear implicits.
Arguments Kleisli_Data: clear implicits.
Section Kleisli_precategory.
Definition Kleisli_Mor_laws {C : precategory_data} (T T': Kleisli_Data C)
(α : ∏ a : C, T a --> T' a) : UU :=
(∏ a : C, α a ∘ η T a = η T' a) ×
(∏ (a b : C) (f : C⟦a,T b⟧), bind T' (α b ∘ f) ∘ α a = α b ∘ (bind T f)).
Lemma isaprop_Kleisli_Mor_laws {C : precategory_data} (hs : has_homsets C) (T T' : Kleisli_Data C)
(α : ∏ a : C, T a --> T' a) :
isaprop (Kleisli_Mor_laws T T' α).
Proof.
apply isapropdirprod; repeat (apply impred_isaprop; intros); apply hs.
Defined.
Definition Kleisli_Mor {C : precategory_data} (T T' : Kleisli_Data C) : UU :=
∑ (α : ∏ a : C, T a --> T' a), Kleisli_Mor_laws T T' α.
Definition nat_trans_from_kleisli_mor {C : precategory_data}
{T T' : Kleisli_Data C} (s : Kleisli_Mor T T') :
∏ a : C, T a --> T' a := pr1 s.
Definition Kleisli_Mor_η {C : precategory_data} {T T' : Kleisli C} (α : Kleisli_Mor T T') :
∏ a : C, η T a · nat_trans_from_kleisli_mor α a = η T' a :=
pr1 (pr2 α).
Definition Kleisli_Mor_bind {C : precategory_data} {T T' : Kleisli C} (α : Kleisli_Mor T T') :
∏ (a b : C) (f : C⟦a,T b⟧),
bind T' (nat_trans_from_kleisli_mor α b ∘ f) ∘ nat_trans_from_kleisli_mor α a =
nat_trans_from_kleisli_mor α b ∘ (bind T f) :=
pr2 (pr2 α).
Definition Kleisli_Mor_equiv {C : precategory_data} (hs : has_homsets C) {T T' : Kleisli C}
(α β : Kleisli_Mor T T') :
α = β ≃ (nat_trans_from_kleisli_mor α = nat_trans_from_kleisli_mor β).
Proof.
apply subtypeInjectivity.
intro a.
now apply isaprop_Kleisli_Mor_laws.
Defined.
Definition map {C : precategory_data} (T : Kleisli_Data C) {a b : C} (f : a --> b) :
T a --> T b :=
bind T (η T b ∘ f).
Lemma map_id {C : precategory} {T : Kleisli_Data C} (H : Kleisli_Laws T) :
∏ a : C, map T (identity a) = identity (T a).
Proof.
intro. unfold map.
rewrite id_left.
now apply η_bind.
Defined.
Lemma map_map {C : precategory} {T : Kleisli_Data C} (H : Kleisli_Laws T) :
∏ (a b c : C) (f : a --> b) (g : b --> c), map T (g ∘ f) = map T g ∘ map T f.
Proof.
intros. unfold map.
rewrite (bind_bind H).
do 2 rewrite <- assoc.
now rewrite (bind_η H).
Defined.
Lemma map_bind {C : precategory} {T : Kleisli_Data C} (H : Kleisli_Laws T) :
∏ (a b c : C) (f : b --> c) (g : a --> T b), map T f ∘ bind T g = bind T (map T f ∘ g).
Proof.
intros. unfold map.
now rewrite (bind_bind H).
Defined.
Lemma bind_map {C : precategory} {T : Kleisli_Data C} (H : Kleisli_Laws T) :
∏ (a b c : C) (f : b --> T c) (g : a --> b),
bind T f ∘ map T g = bind T (f ∘ g).
Proof.
intros. unfold map.
rewrite (bind_bind H).
rewrite <- assoc.
now rewrite (bind_η H).
Defined.
Lemma map_η {C : precategory} {T : Kleisli_Data C} (H : Kleisli_Laws T) :
∏ (a b : C) (f : a --> b),
map T f ∘ η T a = η T b ∘ f.
Proof.
intros. unfold map.
now rewrite (bind_η H).
Defined.
Definition μ {C : precategory} (T : Kleisli_Data C) (a : C) :
T (T a) --> T a :=
bind T (identity (T a)).
Definition kleisli_functor_data {C : precategory} (T : Kleisli_Data C) :
functor_data C C :=
mk_functor_data T (@map C T).
Definition is_functor_kleisli {C : precategory}
{T : Kleisli_Data C} (H : Kleisli_Laws T) :
is_functor(kleisli_functor_data T) :=
map_id H ,, map_map H.
Definition kleisli_functor {C : precategory} (T : Kleisli C) : functor C C :=
mk_functor (kleisli_functor_data T) (is_functor_kleisli T).
Lemma is_nat_trans_kleisli_mor {C : precategory} {T T' : Kleisli C} (α : Kleisli_Mor T T') :
is_nat_trans (kleisli_functor T) (kleisli_functor T') (nat_trans_from_kleisli_mor α).
Proof.
unfold is_nat_trans. intros. simpl. unfold map.
rewrite <- (Kleisli_Mor_bind α).
rewrite <- assoc.
now rewrite (Kleisli_Mor_η α).
Defined.
Definition nat_trans_kleisli_mor {C : precategory} {T T' : Kleisli C} (α : Kleisli_Mor T T') :
nat_trans (kleisli_functor T) (kleisli_functor T') :=
mk_nat_trans (kleisli_functor T) (kleisli_functor T')
(nat_trans_from_kleisli_mor α) (is_nat_trans_kleisli_mor α).
Lemma Kleisli_Mor_eq {C : precategory} (hs : has_homsets C)
{T T' : Kleisli C} (α α' : Kleisli_Mor T T') :
nat_trans_from_kleisli_mor α = nat_trans_from_kleisli_mor α' → α = α'.
Proof.
apply Kleisli_Mor_equiv; assumption.
Defined.
Lemma is_nat_trans_η {C : precategory} (T : Kleisli C) :
is_nat_trans (functor_identity C) (kleisli_functor T) (η T).
Proof.
unfold is_nat_trans. simpl. intros.
now rewrite (map_η T).
Defined.
Definition nat_trans_η {C : precategory} (T : Kleisli C) :
functor_identity C ⟹ kleisli_functor T :=
(η T,, is_nat_trans_η T).
Lemma is_nat_trans_μ {C : precategory} (T : Kleisli C) :
is_nat_trans (kleisli_functor T □ kleisli_functor T) (kleisli_functor T) (μ T).
Proof.
unfold is_nat_trans, μ. simpl. intros.
rewrite (map_bind T), (bind_map T).
now rewrite id_left, id_right.
Defined.
Definition nat_trans_μ {C : precategory} (T : Kleisli C) :
kleisli_functor T □ kleisli_functor T ⟹ kleisli_functor T :=
μ T,, is_nat_trans_μ T.
Lemma Kleisli_identity_laws {C : precategory} (T : Kleisli C) :
Kleisli_Mor_laws T T (λ a : C, identity (T a)).
Proof.
split; simpl; intros a.
- apply id_right.
- intros. do 2 rewrite id_right; apply id_left.
Defined.
Definition Kleisli_identity {C : precategory} (T : Kleisli C) : Kleisli_Mor T T :=
(λ a : C, identity (T a)),, Kleisli_identity_laws T.
Lemma Kleisli_composition_laws {C : precategory} {T T' T'' : Kleisli C}
(α : Kleisli_Mor T T') (α' : Kleisli_Mor T' T'') :
Kleisli_Mor_laws T T''
(λ a : C, nat_trans_from_kleisli_mor α a · nat_trans_from_kleisli_mor α' a).
Proof.
split; intros; simpl.
- rewrite assoc.
set (H := Kleisli_Mor_η α). rewrite H.
apply Kleisli_Mor_η.
- pathvia (nat_trans_from_kleisli_mor α a ·
(nat_trans_from_kleisli_mor α' a ·
bind T'' ((f · nat_trans_from_kleisli_mor α b) ·
nat_trans_from_kleisli_mor α' b))).
× now repeat rewrite assoc.
× rewrite (Kleisli_Mor_bind α').
rewrite assoc. rewrite (Kleisli_Mor_bind α).
apply pathsinv0. apply assoc.
Defined.
Definition Kleisli_composition {C : precategory} {T T' T'' : Kleisli C}
(α : Kleisli_Mor T T') (α' : Kleisli_Mor T' T'') :
Kleisli_Mor T T'' :=
(λ a : C, nat_trans_from_kleisli_mor α a · nat_trans_from_kleisli_mor α' a),,
Kleisli_composition_laws α α'.
Definition precategory_Kleisli_ob_mor (C : precategory) : precategory_ob_mor :=
precategory_ob_mor_pair (Kleisli C) Kleisli_Mor.
Definition precategory_Kleisli_Data (C : precategory) : precategory_data :=
precategory_data_pair (precategory_Kleisli_ob_mor C)
(@Kleisli_identity C)
(@Kleisli_composition C).
Lemma precategory_Kleisli_axioms (C : precategory) (hs : has_homsets C) :
is_precategory (precategory_Kleisli_Data C).
Proof.
repeat split; simpl; intros.
- apply (invmap (Kleisli_Mor_equiv hs _ _ )).
apply funextsec. intros x. apply id_left.
- apply (invmap (Kleisli_Mor_equiv hs _ _ )).
apply funextsec. intros x. apply id_right.
- apply (invmap (Kleisli_Mor_equiv hs _ _ )).
apply funextsec. intros x. apply assoc.
- apply (invmap (Kleisli_Mor_equiv hs _ _ )).
apply funextsec. intros x. apply assoc'.
Defined.
Definition precategory_Kleisli (C : precategory) (hs : has_homsets C) : precategory :=
precategory_Kleisli_Data C,, precategory_Kleisli_axioms C hs.
Lemma has_homsets_Kleisli (C : category) :
has_homsets (precategory_Kleisli C (homset_property C)).
Proof.
intros F G. simpl. unfold Kleisli_Mor.
apply isaset_total2 .
- apply impred_isaset.
intro. apply C.
- intros.
apply isasetaprop.
apply isaprop_Kleisli_Mor_laws.
apply C.
Defined.
Definition category_Kleisli (C : category) : category :=
precategory_Kleisli C (homset_property C),, has_homsets_Kleisli C.
Definition forgetfunctor_Kleisli (C : category) :
functor (category_Kleisli C) (functor_category C C).
Proof.
use mk_functor.
- simpl.
use mk_functor_data.
+ simpl.
exact (λ T : Kleisli C, kleisli_functor T).
+ simpl. intros T T' α.
exact (nat_trans_kleisli_mor α).
- split.
+ red. intros. simpl. apply nat_trans_eq.
× apply C.
× intros; apply idpath.
+ unfold functor_compax. simpl. intros. apply nat_trans_eq.
× apply C.
× intros. apply idpath.
Defined.
Lemma forgetKleisli_faithful (C : category) : faithful (forgetfunctor_Kleisli C).
Proof.
intros T T'. simpl.
apply isinclbetweensets.
- apply isaset_total2.
+ apply impred_isaset.
intros. apply C.
+ intros. apply isasetaprop. apply isaprop_Kleisli_Mor_laws. apply C.
- apply isaset_nat_trans. apply C.
- intros α α' p.
apply Kleisli_Mor_eq.
+ apply C.
+ apply funextsec. intro c.
change (pr1 (nat_trans_kleisli_mor α) c = pr1 (nat_trans_kleisli_mor α') c).
now rewrite p.
Defined.
inherit the univalence result from precategory_RelMonad
Lemma is_univalent_precategory_Kleisli {C : precategory}
(H: is_univalent C) (R R': Kleisli C)
: is_univalent (precategory_Kleisli C (pr2 H)).
Proof.
exact (is_univalent_RelMonad H (functor_identity C) R R').
Qed.
End Kleisli_precategory.
(H: is_univalent C) (R R': Kleisli C)
: is_univalent (precategory_Kleisli C (pr2 H)).
Proof.
exact (is_univalent_RelMonad H (functor_identity C) R R').
Qed.
End Kleisli_precategory.