Library UniMath.CategoryTheory.DisplayedCats.Limits
Limits
Require Import UniMath.Foundations.Sets.
Require Import UniMath.CategoryTheory.Categories.
Require Import UniMath.CategoryTheory.functor_categories.
Require Import UniMath.CategoryTheory.limits.graphs.colimits.
Require Import UniMath.CategoryTheory.limits.graphs.limits.
Local Open Scope cat.
Require Import UniMath.CategoryTheory.DisplayedCats.Auxiliary.
Require Import UniMath.CategoryTheory.DisplayedCats.Core.
Require Import UniMath.CategoryTheory.DisplayedCats.Constructions.
Require Import UniMath.CategoryTheory.DisplayedCats.Fibrations.
Local Open Scope type_scope.
Local Open Scope mor_disp_scope.
Section Auxiliary.
Definition forms_cone
{C : precategory} {g : graph} (d : diagram g C)
(c : C) (f : ∏ (v : vertex g), C⟦c, dob d v⟧)
: UU
:= ∏ (u v : vertex g) (e : edge u v),
f u · dmor d e = f v.
Coercion coneOut : cone >-> Funclass.
End Auxiliary.
Section Creates_Limits.
Definition creates_limit
{C : category}
(D : disp_cat C)
{J : graph} (F : diagram J (total_category D))
{x : C} (L : cone (mapdiagram (pr1_category D) F) x)
(isL : isLimCone _ x L) : UU
:=
∑ (CC : iscontr
( ∑ (d : D x)
(δ : ∏ j : vertex J, d -->[L j] (pr2 (dob F j))),
forms_cone F (x,,d) (λ j, (L j ,, δ j))))
, isLimCone _ _ (mk_cone _ (pr2 (pr2 (iscontrpr1 CC)))).
Definition creates_limits {C : category} (D : disp_cat C) : UU
:=
∏ (J : graph) (F : diagram J (total_category D))
{x : C} (L : cone (mapdiagram (pr1_category D) F) x)
(isL : isLimCone _ x L),
creates_limit _ _ _ isL.
End Creates_Limits.
Section creates_preserves.
Context {C : category}
(D : disp_cat C)
(H : creates_limits D)
(J : graph)
(X : Lims_of_shape J C).
Notation π := (pr1_category D).
Definition total_limits : Lims_of_shape J (total_category D).
Proof.
intro d.
set (πd := mapdiagram π d).
set (LL := X πd).
set (L := pr1 LL).
set (c := pr1 L).
set (isL := pr2 LL). cbn in isL.
set (XR := H _ d _ _ isL).
unfold creates_limit in XR.
cbn.
use (mk_LimCone _ _ _ (pr2 XR)).
Defined.
Lemma pr1_preserves_limit (d : diagram J (total_category D))
(x : total_category D) (CC : cone d x) : preserves_limit π _ x CC.
Proof.
intro H1.
set (XR := X (mapdiagram π d)).
use is_iso_isLim.
- apply homset_property.
- apply X.
- match goal with |[ |- is_iso ?foo ] ⇒ set (T:= foo) end.
destruct X as [[a L] isL]. cbn in isL.
clear XR.
set (tL := H _ _ _ _ isL).
unfold creates_limit in tL.
set (RR := pr1 tL).
set (RT1 := pr2 tL).
set (RX := isLim_is_iso _ (mk_LimCone _ _ _ RT1) _ _ H1).
set (XR := @functor_on_is_iso_is_iso _ _ π _ _ _ RX).
match goal with |[ H : is_iso ?f |- _ ] ⇒ set (T':= f) end.
assert (X0 : T' = T).
{
clear XR.
clear RX.
unfold T.
unfold T'.
apply (limArrowUnique (mk_LimCone _ _ _ isL)) .
intro j.
set (RRt := mk_LimCone _ _ _ RT1).
set (RRtt := limArrowCommutes RRt x CC j).
set (RH := maponpaths (#π)%Cat RRtt).
cbn in RH.
apply RH.
}
rewrite <- X0.
apply XR.
Defined.
End creates_preserves.