Library UniMath.CategoryTheory.Bicategories.WkCatEnrichment.bicategory
Require Import UniMath.Foundations.PartD.
Require Import UniMath.CategoryTheory.Categories.
Require Import UniMath.CategoryTheory.functor_categories.
Require Import UniMath.CategoryTheory.ProductCategory.
Require Import UniMath.CategoryTheory.HorizontalComposition.
Require Import UniMath.CategoryTheory.Equivalences.Core.
Require Import UniMath.CategoryTheory.Bicategories.WkCatEnrichment.prebicategory.
Require Import UniMath.CategoryTheory.Bicategories.WkCatEnrichment.internal_equivalence.
Require Import UniMath.CategoryTheory.Bicategories.WkCatEnrichment.Notations.
Definition is_bicategory (C : prebicategory) : UU
:= (has_homcats C) × (∏ (a b : C), isweq (path_to_adj_int_equivalence a b)).
Definition bicategory : UU := ∑ C : prebicategory, is_bicategory C.
Definition isaprop_has_homcats { C : prebicategory }
: isaprop (has_homcats C).
Proof.
apply impred.
intro a.
apply impred.
intro b.
apply (isaprop_is_univalent (a -1-> b)).
Qed.
Require Import UniMath.CategoryTheory.Categories.
Require Import UniMath.CategoryTheory.functor_categories.
Require Import UniMath.CategoryTheory.ProductCategory.
Require Import UniMath.CategoryTheory.HorizontalComposition.
Require Import UniMath.CategoryTheory.Equivalences.Core.
Require Import UniMath.CategoryTheory.Bicategories.WkCatEnrichment.prebicategory.
Require Import UniMath.CategoryTheory.Bicategories.WkCatEnrichment.internal_equivalence.
Require Import UniMath.CategoryTheory.Bicategories.WkCatEnrichment.Notations.
Definition is_bicategory (C : prebicategory) : UU
:= (has_homcats C) × (∏ (a b : C), isweq (path_to_adj_int_equivalence a b)).
Definition bicategory : UU := ∑ C : prebicategory, is_bicategory C.
Definition isaprop_has_homcats { C : prebicategory }
: isaprop (has_homcats C).
Proof.
apply impred.
intro a.
apply impred.
intro b.
apply (isaprop_is_univalent (a -1-> b)).
Qed.