Library UniMath.CategoryTheory.Bicategories.WkCatEnrichment.Notations
Require Import UniMath.Foundations.PartD.
Require Import UniMath.CategoryTheory.Categories.
Require Import UniMath.CategoryTheory.functor_categories.
Require Import UniMath.CategoryTheory.PrecategoryBinProduct.
Require Import UniMath.CategoryTheory.HorizontalComposition.
Require Import UniMath.CategoryTheory.Equivalences.Core.
Require Export UniMath.CategoryTheory.Bicategories.WkCatEnrichment.prebicategory.
Notation "a '-1->' b" := (homprecat a b) (at level 50, left associativity).
Notation "f '-2->' g" := (@precategory_morphisms (_ -1->_) f g) (at level 50, left associativity).
Notation "alpha ';v;' beta" := (@compose (_ -1-> _) _ _ _ alpha beta) (at level 50, left associativity).
Notation "f ';1;' g" := (compose1 f g) (at level 50, left associativity).
Notation "alpha ';h;' beta" := (compose2h alpha beta) (at level 50, left associativity).
Notation "alpha ';hi;' beta" := (compose2h_iso alpha beta) (at level 50, left associativity).
Require Import UniMath.CategoryTheory.Categories.
Require Import UniMath.CategoryTheory.functor_categories.
Require Import UniMath.CategoryTheory.PrecategoryBinProduct.
Require Import UniMath.CategoryTheory.HorizontalComposition.
Require Import UniMath.CategoryTheory.Equivalences.Core.
Require Export UniMath.CategoryTheory.Bicategories.WkCatEnrichment.prebicategory.
Notation "a '-1->' b" := (homprecat a b) (at level 50, left associativity).
Notation "f '-2->' g" := (@precategory_morphisms (_ -1->_) f g) (at level 50, left associativity).
Notation "alpha ';v;' beta" := (@compose (_ -1-> _) _ _ _ alpha beta) (at level 50, left associativity).
Notation "f ';1;' g" := (compose1 f g) (at level 50, left associativity).
Notation "alpha ';h;' beta" := (compose2h alpha beta) (at level 50, left associativity).
Notation "alpha ';hi;' beta" := (compose2h_iso alpha beta) (at level 50, left associativity).