Library UniMath.CategoryTheory.Bicategories.DisplayedBicats.DispAdjunctions

Internal adjunction in displayed bicategories

Benedikt Ahrens, Marco Maggesi, Niels van der Weide, Dan Frumin April 2018

Definitions and properties of displayed adjunctions

Section Displayed_Internal_Adjunction.

Context {C : bicat} {D : disp_prebicat C}.

Displayed left adjoints

Data & laws for left adjoints

Definition disp_left_adjoint_data
           {a b : C}
           {f : a --> b}
           (αd : left_adjoint_data f)
           {aa : D a} {bb : D b}
           (ff : aa -->[f] bb)
 : UU
  := (gg : bb -->[left_adjoint_right_adjoint αd] aa),
         (id_disp aa ==>[left_adjoint_unit αd] ff ;; gg)
       × (gg ;; ff ==>[left_adjoint_counit αd] id_disp bb).

Definition disp_left_adjoint_right_adjoint
           {a b : C}
           {f : a --> b}
           (αd : left_adjoint_data f)
           {aa : D a} {bb : D b}
           {ff : aa -->[f] bb}
           (ααd : disp_left_adjoint_data αd ff) :
  bb -->[left_adjoint_right_adjoint αd] aa := pr1 ααd.

Definition disp_left_adjoint_unit
           {a b : C}
           {f : a --> b}
           (αd : left_adjoint_data f)
           {aa : D a} {bb : D b}
           {ff : aa -->[f] bb}
           (ααd : disp_left_adjoint_data αd ff) :
  id_disp aa ==>[left_adjoint_unit αd] ff ;; disp_left_adjoint_right_adjoint αd ααd
  := pr12 ααd.

Definition disp_left_adjoint_counit
           {a b : C}
           {f : a --> b}
           (αd : left_adjoint_data f)
           {aa : D a} {bb : D b}
           {ff : aa -->[f] bb}
           (ααd : disp_left_adjoint_data αd ff) :
  disp_left_adjoint_right_adjoint αd ααd ;; ff ==>[left_adjoint_counit αd] id_disp bb
  := pr22 ααd.

Definition disp_left_adjoint_axioms
           {a b : C}
           {f : a --> b}
           (j : left_adjoint f)
           {aa : D a} {bb : D b}
           {ff : aa -->[f] bb}
           (ααd : disp_left_adjoint_data j ff)
  : UU
  := let gg := disp_left_adjoint_right_adjoint j ααd in
     let ηη := disp_left_adjoint_unit j ααd in
     let εε := disp_left_adjoint_counit j ααd in
( disp_linvunitor ff •• (ηη ▹▹ ff) •• disp_rassociator _ _ _ ••
         (ff ◃◃ εε) •• disp_runitor ff =
         transportb (λ x, _ ==>[x] _) (internal_triangle1 j) (disp_id2 ff) )
     × ( disp_rinvunitor gg •• (gg ◃◃ ηη) •• disp_lassociator _ _ _ ••
         (εε ▹▹ gg) •• disp_lunitor gg =
         transportb (λ x, _ ==>[x] _) (internal_triangle2 j) (disp_id2 gg) ).

Definition disp_internal_triangle1
           {a b : C}
           {f : a --> b}
           (j : left_adjoint f)
           {aa : D a} {bb : D b}
           {ff : aa -->[f] bb}
           {ααd : disp_left_adjoint_data j ff}
           (H : disp_left_adjoint_axioms j ααd)
  := pr1 H.

Definition disp_internal_triangle2
           {a b : C}
           {f : a --> b}
           (j : left_adjoint f)
           {aa : D a} {bb : D b}
           {ff : aa -->[f] bb}
           {ααd : disp_left_adjoint_data j ff}
           (H : disp_left_adjoint_axioms j ααd)
  := pr2 H.

Definition internal_triangle2
           {a b : C} {f : Ca,b}
           {adj : left_adjoint_data f}
           (L : left_adjoint_axioms adj)
           (g := left_adjoint_right_adjoint adj)
  : rinvunitor g (g left_adjoint_unit adj) lassociator _ _ _ (left_adjoint_counit adj g) lunitor g = id2 g
  := pr2 L.

Definition disp_left_adjoint
           {a b : C}
           {f : a --> b}
           (α : left_adjoint f)
           {aa : D a} {bb : D b}
           (ff : aa -->[f] bb)
  := (ααd : disp_left_adjoint_data α ff),
       disp_left_adjoint_axioms α ααd.

Coercion disp_data_of_left_adjoint
         {a b : C}
         {f : a --> b}
         (α : left_adjoint f)
         {aa : D a} {bb : D b}
         {ff : aa -->[f] bb}
         (αα : disp_left_adjoint α ff)
  : disp_left_adjoint_data α ff
  := pr1 αα.

Coercion disp_axioms_of_left_adjoint
         {a b : C}
         {f : a --> b}
         (α : left_adjoint f)
         {aa : D a} {bb : D b}
         {ff : aa -->[f] bb}
         (αα : disp_left_adjoint α ff)
  : disp_left_adjoint_axioms α αα
  := pr2 αα.

Laws for equivalences

Definition disp_left_equivalence_axioms
         {a b : C}
         {f : a --> b}
         (αe : left_equivalence f)
         {aa : D a} {bb : D b}
         {ff : aa -->[f] bb}
         (ααd : disp_left_adjoint_data αe ff)
  : UU
  := is_disp_invertible_2cell (left_equivalence_unit_iso _)
       (disp_left_adjoint_unit αe ααd)
   × is_disp_invertible_2cell (left_equivalence_counit_iso _)
       (disp_left_adjoint_counit αe ααd).

Definition disp_left_adjoint_equivalence
         {a b : C}
         {f : a --> b}
         (αe : left_adjoint_equivalence f)
         {aa : D a} {bb : D b}
         (ff : aa -->[f] bb)
  := (ααd : disp_left_adjoint_data αe ff),
       disp_left_adjoint_axioms αe ααd
     × disp_left_equivalence_axioms αe ααd.

Coercion disp_left_adjoint_of_left_adjoint_equivalence
         {a b : C}
         {f : a --> b}
         {αe : left_adjoint_equivalence f}
         {aa : D a} {bb : D b}
         {ff : aa -->[f] bb}
         (ααe : disp_left_adjoint_equivalence αe ff)
  : disp_left_adjoint αe ff := (pr1 ααe,, pr12 ααe).

Coercion axioms_of_left_adjoint_equivalence
         {a b : C}
         {f : a --> b}
         {αe : left_adjoint_equivalence f}
         {aa : D a} {bb : D b}
         {ff : aa -->[f] bb}
         (ααe : disp_left_adjoint_equivalence αe ff)
  : disp_left_equivalence_axioms αe ααe := pr22 ααe.

Packaged

Definition disp_adjunction
           {a b : C}
           (f : adjunction a b)
           (aa : D a) (bb : D b) : UU
  := ff : aa -->[f] bb, disp_left_adjoint f ff.

Coercion disp_arrow_of_adjunction
         {a b : C}
         {f : adjunction a b}
         {aa : D a} {bb : D b}
         (ff : disp_adjunction f aa bb)
  : aa -->[f] bb
  := pr1 ff.

Coercion disp_left_adjoint_of_adjunction
         {a b : C}
         {f : adjunction a b}
         {aa : D a} {bb : D b}
         (ff : disp_adjunction f aa bb)
  : disp_left_adjoint f ff
  := pr2 ff.

Definition disp_adjoint_equivalence
           {a b : C}
           (f : adjoint_equivalence a b)
           (aa : D a) (bb : D b) : UU
  := ff : aa -->[f] bb, disp_left_adjoint_equivalence f ff.

Coercion disp_adjunction_of_adjoint_equivalence
         {a b : C}
         {f : adjoint_equivalence a b}
         {aa : D a} {bb : D b}
         (ff : disp_adjoint_equivalence f aa bb)
  : disp_adjunction f aa bb.
Proof.
  refine (pr1 ff,, _).
  apply (disp_left_adjoint_of_left_adjoint_equivalence (pr2 ff)).
Defined.

Coercion disp_left_adjoint_equivalence_of_adjoint_equivalence
         {a b : C}
         {f : adjoint_equivalence a b}
         {aa : D a} {bb : D b}
         (ff : disp_adjoint_equivalence f aa bb)
  : disp_left_adjoint_equivalence f ff
  := pr2 ff.


End Displayed_Internal_Adjunction.

From now on, we need the has_disp_cellset property.

Identity is a displayed adjoint

Require Import UniMath.CategoryTheory.Bicategories.Bicategories.Univalence.
Definition disp_internal_adjunction_data_identity
           {C : bicat} {D : disp_bicat C}
           {a : C}
           (aa : D a)
  : disp_left_adjoint_data (internal_adjoint_equivalence_identity a)
                           (id_disp aa).
Proof.
   (id_disp _ ).
  split.
  - exact (disp_linvunitor _ ).
  - exact (disp_lunitor _ ).
Defined.

Definition is_disp_internal_adjunction_identity
           {C : bicat} {D : disp_bicat C}
           {a : C} (aa : D a)
  : disp_left_adjoint_axioms
      (internal_adjoint_equivalence_identity a)
      (disp_internal_adjunction_data_identity aa).
Proof.
  split.
  - etrans.
    { apply maponpaths_2.
      etrans; [apply disp_vassocl | ].
      etrans.
      { apply maponpaths. apply maponpaths.
        etrans; [apply disp_lunitor_lwhisker | ].
        apply maponpaths.
        apply maponpaths.
        apply disp_runitor_lunitor_identity. }
      etrans. { apply maponpaths. apply disp_mor_transportf_prewhisker. }
      etrans. { apply (transport_f_f (λ x, _ ==>[x] _)). }
      etrans.
      { etrans.
        { apply maponpaths.
          apply maponpaths.
          apply disp_rwhisker_transport_left_new. }
        cbn.
        etrans.
        { apply maponpaths.
          apply disp_mor_transportf_prewhisker. }
        etrans. { apply (transport_f_f (λ x, _ ==>[x] _)). }
        etrans.
        apply maponpaths. apply disp_vassocl.
        etrans. { apply (transport_f_f (λ x, _ ==>[x] _)). }
        etrans.
        { apply maponpaths. apply maponpaths.
          etrans; [apply disp_rwhisker_vcomp | ].
          etrans; [apply maponpaths, maponpaths, disp_linvunitor_lunitor | ].
          etrans.
          { apply maponpaths.
            apply disp_rwhisker_transport_left_new. }
          etrans. { apply (transport_f_f (λ x, _ ==>[x] _)). }
          apply maponpaths. apply disp_id2_rwhisker.
        }
        etrans. { apply maponpaths, disp_mor_transportf_prewhisker. }
        etrans; [ apply (transport_f_f (λ x, _ ==>[x] _)) | ].
        etrans. { apply maponpaths, disp_mor_transportf_prewhisker. }
        etrans; [ apply (transport_f_f (λ x, _ ==>[x] _)) | ].
        apply maponpaths, disp_id2_right. }
      apply (transport_f_f (λ x, _ ==>[x] _)).
    }
    etrans; [ apply disp_mor_transportf_postwhisker | ].
    etrans.
    { apply maponpaths.
      etrans; [ apply maponpaths, disp_runitor_lunitor_identity | ].
      etrans; [ apply disp_mor_transportf_prewhisker | ].
      apply maponpaths. apply disp_linvunitor_lunitor.
    }
    etrans; [ apply (transport_f_f (λ x, _ ==>[x] _)) | ].
    etrans; [ apply (transport_f_f (λ x, _ ==>[x] _)) | ].
    cbn.
    unfold transportb.
    apply maponpaths_2.
    apply cellset_property.
  - etrans.
    { apply maponpaths_2.
      etrans; [apply disp_vassocl | ].
      etrans.
      { apply maponpaths, maponpaths.
        etrans; [ apply maponpaths, maponpaths, disp_lunitor_runitor_identity | ].
        etrans; [ apply maponpaths, disp_rwhisker_transport_left_new | ].
        etrans; [ apply disp_mor_transportf_prewhisker | ].
        apply maponpaths, disp_runitor_rwhisker. }
      etrans; [apply maponpaths, disp_vassocl | ].
      apply maponpaths, maponpaths.
      etrans; [ apply maponpaths, disp_mor_transportf_prewhisker | ].
      etrans; [ apply disp_mor_transportf_prewhisker | ].
      etrans.
      { apply maponpaths, maponpaths.
        etrans; [ apply disp_mor_transportf_prewhisker | ].
        apply maponpaths, disp_lwhisker_vcomp. }
      etrans; [ apply maponpaths, disp_mor_transportf_prewhisker | ].
      etrans; [ apply (transport_f_f (λ x, _ ==>[x] _)) | ].
      apply maponpaths.
      etrans; [ apply disp_mor_transportf_prewhisker | ].
      { apply maponpaths, maponpaths, maponpaths.
        apply disp_linvunitor_lunitor. }
    }
    etrans; [ apply disp_mor_transportf_postwhisker | ].
    etrans; [ apply maponpaths, disp_mor_transportf_postwhisker | ].
    etrans; [ apply (transport_f_f (λ x, _ ==>[x] _)) | ].
    etrans; [ apply maponpaths, disp_mor_transportf_postwhisker | ].
    etrans; [ apply (transport_f_f (λ x, _ ==>[x] _)) | ].
    etrans; [ apply maponpaths, disp_mor_transportf_postwhisker | ].
    etrans; [ apply (transport_f_f (λ x, _ ==>[x] _)) | ].
    etrans.
    { apply maponpaths.
      etrans; [apply disp_vassocl | ].
      apply maponpaths.
      etrans.
      { apply maponpaths.
        etrans.
        { apply maponpaths_2.
          apply disp_rwhisker_transport_right. }
        cbn.
        etrans; [ apply disp_mor_transportf_postwhisker | ].
        etrans; [ apply maponpaths, maponpaths_2, disp_lwhisker_id2 | ].
        etrans; [ apply maponpaths, disp_mor_transportf_postwhisker | ].
        etrans; [ apply (transport_f_f (λ x, _ ==>[x] _)) | ].
        apply maponpaths. apply disp_id2_left.
      }
      etrans; [ apply maponpaths, (transport_f_f (λ x, _ ==>[x] _)) | ].
      etrans; [ apply disp_mor_transportf_prewhisker | ].
      etrans; [ apply maponpaths, maponpaths, disp_lunitor_runitor_identity | ].
      etrans; [ apply maponpaths, disp_mor_transportf_prewhisker | ].
      etrans; [ apply (transport_f_f (λ x, _ ==>[x] _)) | ].
      etrans.
      { apply maponpaths.
        apply disp_rinvunitor_runitor. }
      apply (transport_f_f (λ x, _ ==>[x] _)).
    }
    etrans; [ apply (transport_f_f (λ x, _ ==>[x] _)) | ].
    etrans; [ apply (transport_f_f (λ x, _ ==>[x] _)) | ].
    cbn.
    unfold transportb.
    apply maponpaths_2.
    apply cellset_property.
Qed.

Definition disp_identity_adjoint_equivalence
           {C : bicat} {D : disp_bicat C}
           {a : C} (aa : D a)
  : disp_adjoint_equivalence (internal_adjoint_equivalence_identity a) aa aa.
Proof.
  use tpair.
  - apply disp_internal_adjunction_data_identity.
  - cbn. use tpair.
    + apply disp_internal_adjunction_data_identity.
    + cbn. split.
      { apply is_disp_internal_adjunction_identity. }
      {
        split.
        - use tpair.
          + apply disp_lunitor.
          + split.
            × cbn.
              refine (disp_linvunitor_lunitor (id_disp aa) @ _).
              apply (@transportf_paths _ (λ z, _ ==>[ z ] _)).
              apply C.
            × cbn.
              refine (disp_lunitor_linvunitor (id_disp aa) @ _).
              apply (@transportf_paths _ (λ z, _ ==>[ z ] _)).
              apply C.
        - use tpair.
          + apply disp_linvunitor.
          + split.
            × cbn.
              refine (disp_lunitor_linvunitor (id_disp aa) @ _).
              apply (@transportf_paths _ (λ z, _ ==>[ z ] _)).
              apply C.
            × cbn.
              refine (disp_linvunitor_lunitor (id_disp aa) @ _).
              apply (@transportf_paths _ (λ z, _ ==>[ z ] _)).
              apply C. }
Defined.

Classification of internal adjunctions in the total category

Section Total_Internal_Adjunction.

Context {B : bicat} {D : disp_bicat B}.
Local Definition E := total_bicat D.

Equivalences for data
Local Definition left_adjoint_data_total_to_base
      {a b : B}
      {aa : D a} {bb : D b}
      {f : a --> b}
      {ff : aa -->[f] bb} :
  @left_adjoint_data E (a,,aa) (b,,bb) (f,,ff)
  left_adjoint_data f.
Proof.
  intros f_d.
  set (g' := pr1 f_d).
  set (Hdat := pr2 f_d).
  set (g := pr1 g').
  set (η := pr1 (pr1 Hdat)).
  set (ε := pr1 (pr2 Hdat)).
   g.
  exact (η,,ε).
Defined.

Local Definition left_adjoint_data_total_to_fiber
      {a b : B}
      {aa : D a} {bb : D b}
      {f : a --> b}
      {ff : aa -->[f] bb} :
   (j : @left_adjoint_data E (a,,aa) (b,,bb) (f,,ff)),
  disp_left_adjoint_data (left_adjoint_data_total_to_base j) ff.
Proof.
  intros f_d.
  set (g' := pr1 f_d).
  set (Hdat := pr2 f_d).
  set (gg := pr2 g').
  set (ηη := pr2 (pr1 Hdat)).
  set (εε := pr2 (pr2 Hdat)).
   gg. exact (ηη,,εε).
Defined.

Definition left_adjoint_data_total_to_disp
      {a b : B}
      {aa : D a} {bb : D b}
      {f : a --> b}
      (ff : aa -->[f] bb) :
  @left_adjoint_data E (a,,aa) (b,,bb) (f,,ff)
   (α : left_adjoint_data f), disp_left_adjoint_data α ff.
Proof.
  intros j.
   (left_adjoint_data_total_to_base j).
  apply left_adjoint_data_total_to_fiber.
Defined.

Definition left_adjoint_data_disp_to_total
      {a b : B}
      {aa : D a} {bb : D b}
      {f : a --> b}
      (ff : aa -->[f] bb) :
  ( (α : left_adjoint_data f), disp_left_adjoint_data α ff)
  @left_adjoint_data E (a,,aa) (b,,bb) (f,,ff).
Proof.
  intros j'.
  pose (j := pr1 j').
  pose (jj := pr2 j').
  pose (g := left_adjoint_right_adjoint j).
  pose (gg := (disp_left_adjoint_right_adjoint _ jj : bb -->[g] aa)).
  use tpair.
  - exact (g,, gg).
  - simpl.     use tpair.
    +
      use tpair; simpl.
      apply (left_adjoint_unit j).
      apply (disp_left_adjoint_unit _ jj).
    +
      use tpair; simpl.
      apply (left_adjoint_counit j).
      apply (disp_left_adjoint_counit _ jj).
Defined.

Definition left_adjoint_data_total_weq
      {a b : B}
      {aa : D a} {bb : D b}
      {f : a --> b}
      (ff : aa -->[f] bb) :
  @left_adjoint_data E (a,,aa) (b,,bb) (f,,ff)
   (α : left_adjoint_data f), disp_left_adjoint_data α ff.
Proof.
   (left_adjoint_data_total_to_disp ff).
  use gradth.
  - exact (left_adjoint_data_disp_to_total ff).
  - intros ?. reflexivity.
  - intros ?. reflexivity.
Defined.

The equivalence for adjunction laws
Definition left_adjoint_axioms_total_to_base
      {a b : B}
      {aa : D a} {bb : D b}
      {f : a --> b}
      {ff : aa -->[f] bb}
      {td : @left_adjoint_data E (a,,aa) (b,,bb) (f,,ff)} :
  left_adjoint_axioms td
  left_adjoint_axioms (left_adjoint_data_total_to_base td).
Proof.
  intros Hlaw.
  use tpair.
  + apply (base_paths _ _ (pr1 Hlaw)).
  + apply (base_paths _ _ (pr2 Hlaw)).
Defined.

Definition left_adjoint_axioms_total_to_fiber
      {a b : B}
      {aa : D a} {bb : D b}
      {f : a --> b}
      {ff : aa -->[f] bb}
      (td : @left_adjoint_data E (a,,aa) (b,,bb) (f,,ff))
      (ta : left_adjoint_axioms td) :
  disp_left_adjoint_axioms
    (_,, left_adjoint_axioms_total_to_base ta)
    (left_adjoint_data_total_to_fiber td).
Proof.
  use tpair.
  - apply (transportf_transpose (P:=λ x, _ ==>[x] _)).
    etrans; [| apply (fiber_paths (pr1 ta)) ].
    apply (transportf_transpose (P:=λ x, _ ==>[x] _)).
    apply (transportfbinv (λ x, _ ==>[x] _)).
  - apply (transportf_transpose (P:=λ x, _ ==>[x] _)).
    etrans; [| apply (fiber_paths (pr2 ta)) ].
    apply (transportf_transpose (P:=λ x, _ ==>[x] _)).
    apply (transportfbinv (λ x, _ ==>[x] _)).
Qed.

Definition left_adjoint_axioms_total_to_disp
      {a b : B}
      {aa : D a} {bb : D b}
      {f : a --> b}
      {ff : aa -->[f] bb}
      (td : @left_adjoint_data E (a,,aa) (b,,bb) (f,,ff))
      (ta : left_adjoint_axioms td) :
   (ba : left_adjoint_axioms _),
    disp_left_adjoint_axioms
      (_,, ba)
      (left_adjoint_data_total_to_fiber td).
Proof.
   (left_adjoint_axioms_total_to_base ta).
  apply left_adjoint_axioms_total_to_fiber.
Defined.

Definition left_adjoint_axioms_disp_to_total
      {a b : B}
      {aa : D a} {bb : D b}
      {f : a --> b}
      {ff : aa -->[f] bb}
      (td : @left_adjoint_data E (a,,aa) (b,,bb) (f,,ff)) :
  ( (ba : left_adjoint_axioms _),
     disp_left_adjoint_axioms
       (_,, ba)
       (left_adjoint_data_total_to_fiber td))
  left_adjoint_axioms td.
Proof.
  intros j'.
  pose (j := pr1 j').
  pose (jj := pr2 j').
  simpl; split; use total2_paths_b; (apply j || apply jj).
Qed.

Definition left_adjoint_axioms_total_weq
      {a b : B}
      {aa : D a} {bb : D b}
      {f : a --> b}
      {ff : aa -->[f] bb}
      (td : @left_adjoint_data E (a,,aa) (b,,bb) (f,,ff)):
  left_adjoint_axioms td
 
  (ba : left_adjoint_axioms _),
  disp_left_adjoint_axioms
    (_,, ba)
    (left_adjoint_data_total_to_fiber td).
Proof.
  apply weqimplimpl.
  - exact (left_adjoint_axioms_total_to_disp td).
  - exact (left_adjoint_axioms_disp_to_total td).
  - apply isofhleveltotal2; try intro; apply cellset_property.
  - apply isofhleveltotal2.
    { apply isofhleveltotal2; try intro; apply cellset_property. }
    intros ?.
    apply isofhleveltotal2; try intro; apply disp_cellset_property.
Defined.

The equivalence for equivalence laws
Definition left_equivalence_axioms_total_to_base
      {a b : B}
      {aa : D a} {bb : D b}
      {f : a --> b}
      {ff : aa -->[f] bb}
      {td : @left_adjoint_data E (a,,aa) (b,,bb) (f,,ff)} :
  left_equivalence_axioms td
  left_equivalence_axioms (left_adjoint_data_total_to_base td).
Proof.
  intros Hlaw.
  pose ( := pr1 Hlaw).
  pose ( := pr2 Hlaw).
  use tpair.
  + apply (is_invertible_total_to_base _ _ ).
  + apply (is_invertible_total_to_base _ _ ).
Defined.

Definition left_equivalence_axioms_total_to_fiber
      {a b : B}
      {aa : D a} {bb : D b}
      {f : a --> b}
      {ff : aa -->[f] bb}
      (td : @left_adjoint_data E (a,,aa) (b,,bb) (f,,ff))
      (ta : left_equivalence_axioms td) :
  disp_left_equivalence_axioms
    (left_adjoint_data_total_to_base td,,
     left_equivalence_axioms_total_to_base ta)
    (left_adjoint_data_total_to_fiber td).
Proof.
  pose ( := pr1 ta).
  pose ( := pr2 ta).
  cbn in ,.
  use tpair.
  - apply (is_invertible_total_to_fiber _ _ ).
  - apply (is_invertible_total_to_fiber _ _ ).
Qed.

Definition left_equivalence_axioms_total_to_disp
      {a b : B}
      {aa : D a} {bb : D b}
      {f : a --> b}
      {ff : aa -->[f] bb}
      (td : @left_adjoint_data E (a,,aa) (b,,bb) (f,,ff))
      (ta : left_equivalence_axioms td) :
   (ba : left_equivalence_axioms _),
    disp_left_equivalence_axioms
      (_,, ba)
      (left_adjoint_data_total_to_fiber td).
Proof.
   (left_equivalence_axioms_total_to_base ta).
  apply left_equivalence_axioms_total_to_fiber.
Defined.

Definition left_equivalence_axioms_disp_to_total
      {a b : B}
      {aa : D a} {bb : D b}
      {f : a --> b}
      {ff : aa -->[f] bb}
      (td : @left_adjoint_data E (a,,aa) (b,,bb) (f,,ff)) :
  ( (ba : left_equivalence_axioms _),
     disp_left_equivalence_axioms
       (_,, ba)
       (left_adjoint_data_total_to_fiber td))
  left_equivalence_axioms td.
Proof.
  intros αe.
  pose (ba := pr1 αe).
  pose (ta := pr2 αe).
  cbn in ba, ta.
  split.
  - apply is_invertible_disp_to_total.
    use tpair.
    + apply ba.
    + apply ta.
  - apply is_invertible_disp_to_total.
    use tpair.
    + apply ba.
    + apply ta.
Qed.

Definition left_equivalence_axioms_total_weq
      {a b : B}
      {aa : D a} {bb : D b}
      {f : a --> b}
      {ff : aa -->[f] bb}
      (td : @left_adjoint_data E (a,,aa) (b,,bb) (f,,ff)):
  left_equivalence_axioms td
 
  (ba : left_equivalence_axioms _),
  disp_left_equivalence_axioms
    (_,, ba)
    (left_adjoint_data_total_to_fiber td).
Proof.
  apply weqimplimpl.
  - exact (left_equivalence_axioms_total_to_disp td).
  - exact (left_equivalence_axioms_disp_to_total td).
  - apply isapropdirprod; apply isaprop_is_invertible_2cell.
  - apply isofhleveltotal2.
    { apply isapropdirprod; apply isaprop_is_invertible_2cell. }
    intros ?.
    apply isapropdirprod; apply isaprop_is_disp_invertible_2cell.
Defined.


Lemma adjunction_total_disp_weq
      {a b : B}
      (aa : D a) (bb : D b) :
  @adjunction E (a,,aa) (b,,bb)
(f : adjunction a b), disp_adjunction f aa bb.
Proof.
  unfold adjunction. cbn.
  eapply weqcomp. {
    apply weqinvweq.
    apply weqtotal2asstol. }
  eapply weqcomp. 2: {
    apply weqtotal2asstol. }
  eapply weqfibtototal. intros f.

  unfold disp_adjunction. cbn.
  eapply weqcomp. 2: {
    apply weqtotal2comm. }
  eapply weqfibtototal. intros ff.

  unfold left_adjoint.

  eapply weqcomp. {
    pose (Q:=λ (w : ( αd, disp_left_adjoint_data αd ff)),
                    ( l, disp_left_adjoint_axioms (pr1 w,,l) (pr2 w))).
    eapply (weqbandf (left_adjoint_data_total_weq ff) _ Q).
    intros td. unfold Q; cbn.
    apply left_adjoint_axioms_total_weq. }
  cbn.

  eapply weqcomp. {
    apply weqinvweq.
    apply weqtotal2asstol. }
  cbn.
  eapply weqcomp. 2: {
    apply weqtotal2asstol. }
  cbn.
  eapply weqfibtototal. intros αd.
  eapply weqcomp. {
    apply weqtotal2comm. }
  cbn.
  apply idweq.
Defined.

Lemma left_adjoint_equivalence_total_disp_weq
      {a b : B}
      {aa : D a} {bb : D b}
      (f : a --> b)
      (ff : aa -->[f] bb) :
  @left_adjoint_equivalence E (a,,aa) (b,,bb) (f,,ff)
(αe : left_adjoint_equivalence f),
  disp_left_adjoint_equivalence αe ff.
Proof.
  unfold left_adjoint_equivalence.
  cbn.
  eapply weqcomp. {
    pose (Q:=
      λ (w : ( αd, disp_left_adjoint_data αd ff)),
        ( l, disp_left_adjoint_axioms (pr1 w,,l) (pr2 w))
      × ( l, disp_left_equivalence_axioms (pr1 w,,l) (pr2 w))).
    eapply (weqbandf (left_adjoint_data_total_weq ff) _ Q).
    intros td. unfold Q; cbn.
    apply weqdirprodf.
    - apply left_adjoint_axioms_total_weq.
    - apply left_equivalence_axioms_total_weq. }
  cbn.
  cbn.
  eapply weqcomp. {
    apply weqinvweq.
    apply weqtotal2asstol. }
  cbn.
  eapply weqcomp. 2: {
    apply weqtotal2asstol. }
  cbn.
  eapply weqfibtototal. intros αd.

  unfold disp_left_adjoint_equivalence.
  cbn.
  eapply weqcomp. 2: {
    apply weqtotal2comm. }
  cbn.
  eapply weqfibtototal. intros ααd.
  cbn.

  eapply weqcomp. 2: {
    apply weqtotal2asstol. }
  cbn.
  eapply weqcomp. {
    apply weqinvweq.
    apply weqtotal2asstol. }
  cbn.
  eapply weqfibtototal. intros αa.
  cbn.
  eapply weqcomp. {
    apply weqtotal2comm. }
  apply idweq.
Defined.

Lemma adjoint_equivalence_total_disp_weq
      {a b : B}
      (aa : D a) (bb : D b) :
  @adjoint_equivalence E (a,,aa) (b,,bb)
(f : adjoint_equivalence a b), disp_adjoint_equivalence f aa bb.
Proof.
  unfold adjoint_equivalence, disp_adjoint_equivalence. cbn.
  eapply weqcomp. {
    apply weqinvweq.
    apply weqtotal2asstol. }
  eapply weqcomp. 2: {
    apply weqtotal2asstol. }
  eapply weqfibtototal. intros f.

  cbn.
  eapply weqcomp. 2: {
    apply weqtotal2comm. }
  eapply weqfibtototal. intros ff.

  apply left_adjoint_equivalence_total_disp_weq.
Defined.


End Total_Internal_Adjunction.