Library UniMath.CategoryTheory.Bicategories.BicategoryOfBicat
Bicategories
Benedikt Ahrens, Marco Maggesi February 2018 *********************************************************************************Require Import UniMath.Foundations.All.
Require Import UniMath.MoreFoundations.All.
Require Import UniMath.CategoryTheory.Categories.
Require Import UniMath.CategoryTheory.functor_categories.
Require Import UniMath.CategoryTheory.PrecategoryBinProduct.
Require Import UniMath.CategoryTheory.HorizontalComposition.
Require Import UniMath.CategoryTheory.Bicategories.WkCatEnrichment.prebicategory.
Require Import UniMath.CategoryTheory.Bicategories.WkCatEnrichment.Notations.
Require Import UniMath.CategoryTheory.Bicategories.Bicategories.Bicat. Import Bicat.Notations.
Local Open Scope cat.
Local Notation "C 'c×' D" := (precategory_binproduct C D)
(at level 75, right associativity).
Section Build_Bicategory.
Variable C : prebicat.
Definition bicate_ob_hom : prebicategory_ob_hom.
Proof.
∃ C. exact (λ a b : C, hom a b).
Defined.
Definition bicate_id_comp : prebicategory_id_comp.
Proof.
∃ bicate_ob_hom; unfold bicate_ob_hom; simpl; split.
- exact identity.
- unfold hom_data, hom_ob_mor. simpl. intros a b c.
apply hcomp_functor.
Defined.
Definition bicate_lassociator_fun {a b c d : bicate_id_comp}
(x : C ⟦ a, b ⟧ × C ⟦ b, c ⟧ × C ⟦ c, d ⟧)
: pr1 x · (pr12 x · pr22 x) ==> pr1 x · pr12 x · pr22 x
:= lassociator (pr1 x) (pr12 x) (pr22 x).
Lemma bicate_lassociator_fun_natural {a b c d : bicate_id_comp}
: is_nat_trans
(functor_composite
(pair_functor (functor_identity (hom a b)) (compose_functor b c d))
hcomp_functor)
(functor_composite
(precategory_binproduct_assoc (hom a b) (hom b c) (hom c d))
(functor_composite
(pair_functor (compose_functor a b c) (functor_identity (hom c d)))
hcomp_functor)) bicate_lassociator_fun.
Proof.
red; cbn. intros (f1, (f2, f3)) (g1, (g2, g3)).
unfold precategory_binproduct_mor, hom_ob_mor. simpl.
unfold precategory_binproduct_mor, hom_ob_mor. simpl.
intros (x1, (x2, x3)). simpl.
unfold bicate_lassociator_fun. simpl.
apply hcomp_lassoc.
Defined.
Definition bicate_lassociator (a b c d : bicate_id_comp) : associator_trans_type a b c d.
Proof.
∃ bicate_lassociator_fun.
exact bicate_lassociator_fun_natural.
Defined.
Lemma bicate_transfs :
(∏ a b c d : bicate_id_comp, associator_trans_type a b c d) ×
(∏ a b : bicate_id_comp, left_unitor_trans_type a b) ×
(∏ a b : bicate_id_comp, right_unitor_trans_type a b).
Proof.
repeat split.
red. cbn.
- exact lassociator_transf.
- exact lunitor_transf.
- exact runitor_transf.
Defined.
Definition bicate_data : prebicategory_data.
Proof.
∃ bicate_id_comp. exact bicate_transfs.
Defined.
Lemma prebicat_associator_and_unitors_are_iso
: associator_and_unitors_are_iso bicate_data.
Proof.
repeat split; cbn; intros.
- apply is_iso_lassociator.
- apply is_iso_lunitor.
- apply is_iso_runitor.
Defined.
Lemma triangle_identity {a b c : C} (f : C ⟦ a, b ⟧) (g : C ⟦ b, c ⟧)
: id2 f ⋆ lunitor g =
lassociator f (identity b) g • (runitor f ⋆ id2 g).
Proof.
unfold hcomp at 2.
rewrite vassocr.
rewrite runitor_rwhisker.
rewrite hcomp_hcomp'.
unfold hcomp'.
apply maponpaths.
rewrite lwhisker_id2.
apply id2_rwhisker.
Defined.
Lemma pentagon_identity {a b c d e : C}
(k : C ⟦ a, b ⟧)
(h : C ⟦ b, c ⟧)
(g : C ⟦ c, d ⟧)
(f : C ⟦ d, e ⟧)
: lassociator k h (g · f) • lassociator (k · h) g f =
((id2 k ⋆ lassociator h g f) • lassociator k (h · g) f) •
(lassociator k h g ⋆ id2 f).
Proof.
rewrite <- lassociator_lassociator.
unfold hcomp at 2.
rewrite lwhisker_id2. rewrite id2_right.
apply maponpaths_2. apply maponpaths_2.
unfold hcomp. rewrite id2_rwhisker.
apply pathsinv0. apply id2_left.
Defined.
Lemma prebicat_prebicategory_coherence
: prebicategory_coherence bicate_data.
Proof.
split.
- intros. apply pentagon_identity.
- intros. apply triangle_identity.
Defined.
Hypothesis sc : isaset_cells C.
Lemma is_prebicategory_bicate : is_prebicategory bicate_data.
Proof.
split.
- apply sc.
- split.
+ exact prebicat_associator_and_unitors_are_iso.
+ exact prebicat_prebicategory_coherence.
Qed.
Definition prebicategory_of_prebicat : prebicategory.
Proof.
∃ bicate_data. exact is_prebicategory_bicate.
Defined.
End Build_Bicategory.