Library UniMath.Algebra.IteratedBinaryOperations

Require Export UniMath.Combinatorics.Lists.
Require Export UniMath.Combinatorics.FiniteSequences.
Require Export UniMath.Algebra.RigsAndRings.
Require Export UniMath.Foundations.UnivalenceAxiom.

Require Import UniMath.MoreFoundations.Tactics.
Require Import UniMath.MoreFoundations.NegativePropositions.



Local Notation "[]" := Lists.nil (at level 0, format "[]").
Local Infix "::" := cons.

general associativity for binary operations on types

Section BinaryOperations.

  Context {X:UU} (unel:X) (op:binop X).


  Definition iterop_list : list X X :=
    foldr1 op unel.

  Definition iterop_fun {n} (x:stn nX) : X.
  Proof.
    intros.
    induction n as [|n _].
    { exact unel. }
    { induction n as [|n I].
      { exact (x lastelement). }
      { exact (op (I (x dni lastelement)) (x lastelement)). }}
  Defined.

  Definition iterop_seq : Sequence X X.
  Proof.
    intros x.
    exact (iterop_fun x).
  Defined.


  Definition iterop_list_list : list(list X) X.
  Proof.
    intros w.
    exact (iterop_list (map iterop_list w)).
  Defined.

  Definition iterop_fun_fun {n} {m:stn n nat} : ( i (j:stn (m i)), X) X.
  Proof.
    intros x.
    exact (iterop_fun (λ i, iterop_fun (x i))).
  Defined.

  Definition iterop_seq_seq : Sequence (Sequence X) X.
  Proof.
    intros x.
    exact (iterop_fun_fun (λ i j, x i j)).
  Defined.

  Definition isAssociative_list := (x:list (list X)), iterop_list (Lists.flatten x) = iterop_list_list x.

  Definition isAssociative_fun :=
     n (m:stn n nat) (x : i (j:stn (m i)), X), iterop_fun (StandardFiniteSets.flatten' x) = iterop_fun_fun x.

  Definition isAssociative_seq :=
     (x : Sequence (Sequence X)), iterop_seq (FiniteSequences.flatten x) = iterop_seq_seq x.

  Local Open Scope stn.

  Definition isCommutative_fun :=
     n (x:n X) (f:nn), iterop_fun (x f) = iterop_fun x.

  Lemma assoc_fun_to_seq : isAssociative_fun isAssociative_seq.
  Proof.
    intros assoc x.
    exact (assoc _ _ (λ i j, x i j)).
  Defined.

  Lemma assoc_seq_to_fun : isAssociative_seq isAssociative_fun.
  Proof.
    intros assoc n m x.
    exact (assoc (functionToSequence (λ i, functionToSequence (x i)))).
  Defined.

  Definition iterop_list_step (runax : isrunit op unel) (x:X) (xs:list X) :
    iterop_list (x::xs) = op x (iterop_list xs).
  Proof.
    generalize x; clear x.
    apply (list_ind (λ xs, x : X, iterop_list (x :: xs) = op x (iterop_list xs))).
    { intro x. simpl. apply pathsinv0,runax. }
    intros y rest IH x.
    reflexivity.
  Defined.

  Definition iterop_fun_step' (lunax : islunit op unel) {m} (xs:stn m X) (x:X) :
    iterop_fun (append_vec xs x) = op (iterop_fun xs) x.
  Proof.
    unfold iterop_fun at 1.
    simpl.
    induction m as [|m _].
    - simpl. rewrite append_vec_compute_2. apply pathsinv0. apply lunax.
    - simpl. rewrite append_vec_compute_2.
      apply (maponpaths (λ y, op y x)). apply maponpaths.
      apply append_and_drop_fun.
  Defined.

  Definition iterop_fun_step (lunax : islunit op unel) {m} (x:stn(S m) X) :
    iterop_fun x = op (iterop_fun (x dni lastelement)) (x lastelement).
  Proof.
    intros.
    unfold iterop_fun at 1.
    simpl.
    induction m as [|m _].
    - simpl. apply pathsinv0, lunax.
    - simpl. reflexivity.
  Defined.

  Definition iterop_fun_append (lunax : islunit op unel) {m} (x:stn m X) (y:X) :
    iterop_fun (append_vec x y) = op (iterop_fun x) y.
  Proof.
    rewrite (iterop_fun_step lunax).
    rewrite append_vec_compute_2.
    apply (maponpaths (λ x, op (iterop_fun x) y)).
    apply funextfun; intro i.
    unfold funcomp.
    rewrite append_vec_compute_1.
    reflexivity.
  Defined.

End BinaryOperations.

general associativity for monoids

Local Open Scope multmonoid.

Section Monoids.

  Context {M:monoid}.

  Let oo := @op M.

  Let uu := unel M.

  Definition iterop_fun_mon {n} (x:stn nM) : M := iterop_fun uu oo x.

  Definition iterop_list_mon : list M M := iterop_list uu oo.

  Definition iterop_seq_mon : Sequence M M := iterop_seq uu oo.

  Definition iterop_seq_seq_mon : Sequence (Sequence M) M := iterop_seq_seq uu oo.

  Definition iterop_list_list_mon : list (list M) M := iterop_list_list uu oo.


  Lemma iterop_seq_mon_len1 (x : stn 1 M) :
    iterop_seq_mon (functionToSequence x) = x lastelement.
  Proof.
    reflexivity.
  Defined.

  Lemma iterop_seq_mon_step {n} (x:stn (S n) M) :
    iterop_seq_mon (S n,,x) = iterop_seq_mon (n,,x dni lastelement) × x lastelement.
  Proof.
    intros. induction n as [|n _].
    - cbn. apply pathsinv0, lunax.
    - reflexivity.
  Defined.

  Lemma iterop_list_mon_nil : iterop_list_mon [] = 1.
  Proof.
    reflexivity.
  Defined.

  Lemma iterop_list_mon_step (x:M) (xs:list M) :
    iterop_list_mon (x::xs) = x × iterop_list_mon xs.
  Proof.
    apply iterop_list_step. apply runax.
  Defined.

  Lemma iterop_list_mon_singleton (x : M) : iterop_list_mon (x::[]) = x.
  Proof.
    reflexivity.
  Defined.

  Local Lemma iterop_seq_mon_append (x:Sequence M) (m:M) :
    iterop_seq_mon (append x m) = iterop_seq_mon x × m.
  Proof.
     revert x m.
     intros [n x] ?. unfold append. rewrite iterop_seq_mon_step.
     rewrite append_vec_compute_2.
     apply (maponpaths (λ a, a × m)).
     apply (maponpaths (λ x, iterop_seq_mon (n,,x))).
     apply funextfun; intros [i b]; simpl.
     unfold funcomp.
     now rewrite append_vec_compute_1.
  Defined.

  Local Lemma iterop_seq_seq_mon_step {n} (x:stn (S n) Sequence M) :
    iterop_seq_seq_mon (S n,,x) = iterop_seq_seq_mon (n,,x dni lastelement) × iterop_seq_mon (x lastelement).
  Proof.
    intros.
    induction n as [|n _].
    - simpl. apply pathsinv0,lunax.
    - reflexivity.
  Defined.

  Lemma iterop_seq_mon_homot {n} (x y : stn n M) :
    x ¬ y iterop_seq_mon(n,,x) = iterop_seq_mon(n,,y).
  Proof.
    revert x y. induction n as [|n N].
    - reflexivity.
    - intros x y h. rewrite 2 iterop_seq_mon_step.
      apply two_arg_paths.
      + apply N. apply funhomot. exact h.
      + apply h.
  Defined.

End Monoids.

Section Monoids2.

  Context (M:monoid).

  Let op := @op M.

  Let unel := unel M.

  Definition isAssociative_list_mon := isAssociative_list unel op.

  Definition isAssociative_fun_mon := isAssociative_fun unel op.

  Definition isAssociative_seq_mon := isAssociative_seq unel op.

  Definition isCommutative_fun_mon := isCommutative_fun unel op.

End Monoids2.

The general associativity theorem.

Lemma iterop_list_mon_concatenate {M : monoid} (l s : list M) :
  iterop_list_mon (Lists.concatenate l s) = iterop_list_mon l × iterop_list_mon s.
Proof.
  revert l. apply list_ind.
  - apply pathsinv0, lunax.
  - intros x xs J. rewrite Lists.concatenateStep.
    unfold iterop_list_mon.
    rewrite 2 (iterop_list_step _ _ (runax M)).
    rewrite assocax. apply maponpaths. exact J.
Defined.

Theorem associativityOfProducts_list (M:monoid) : isAssociative_list (unel M) (@op M).
Proof.
This proof comes from the Associativity theorem,
  unfold isAssociative_list.
  apply list_ind.
  - simpl. reflexivity.
  - intros x xs I. simpl in I.
    rewrite Lists.flattenStep. refine (iterop_list_mon_concatenate _ _ @ _).
    unfold iterop_list_list. rewrite mapStep.
    rewrite (iterop_list_step _ _ (runax M)).
    + apply (maponpaths (λ x, _ × x)). exact I.
Defined.

Theorem associativityOfProducts_seq (M:monoid) : isAssociative_seq (unel M) (@op M).
Proof.
This proof comes from the Associativity theorem,
  unfold isAssociative_seq; intros. induction x as [n x].
  induction n as [|n IHn].
  { reflexivity. }
  change (flatten _) with (flatten ((n,,x): NonemptySequence _)).
  rewrite flattenStep.
  change (lastValue _) with (x lastelement).
  unfold iterop_seq_seq. simpl.
  unfold iterop_fun_fun.
  rewrite (iterop_fun_step _ _ (lunax M)).
  generalize (x lastelement) as z; intro z.
  unfold iterop_seq.
  induction z as [m z].
  induction m as [|m IHm].
  { simpl. rewrite runax.
    simple refine (_ @ IHn (x dni lastelement)).
    rewrite concatenate'_r0.
    now apply (two_arg_paths_b (natplusr0 (stnsum (length (x dni lastelement))))). }
  change (length (S m,, z)) with (S m). change (sequenceToFunction (S m,,z)) with z.
  rewrite (iterop_fun_step _ _ (lunax M)). rewrite concatenateStep.
  generalize (z lastelement) as w; intros.
  rewrite <- assocax. unfold append.
  Opaque iterop_fun. simpl. Transparent iterop_fun.
  rewrite (iterop_fun_append _ _ (lunax M)).
  apply (maponpaths (λ u, u×w)). simpl in IHm. apply IHm.
Defined.

Corollary associativityOfProducts' {M:monoid} {n} (f:stn n nat) (x:stn (stnsum f) M) :
  iterop_seq_mon (stnsum f,,x) = iterop_seq_seq_mon (partition f x).
Proof.
  intros. refine (_ @ associativityOfProducts_seq M (partition f x)).
  assert (L := flatten_partition f x). apply pathsinv0. exact (iterop_seq_mon_homot _ _ L).
Defined.

generalized commutativity

Local Notation "s □ x" := (append s x) (at level 64, left associativity).

Ltac change_lhs a := match goal with |- @paths ?T ?x ?y
                                     ⇒ change (@paths T x y) with (@paths T a y) end.
Ltac change_rhs a := match goal with |- @paths ?T ?x ?y
                                     ⇒ change (@paths T x y) with (@paths T x a) end.

Local Open Scope stn.

Lemma commutativityOfProducts_helper {M:abmonoid} {n} (x:stn (S n) M) (j:stn (S n)) :
  iterop_seq_mon (S n,,x) = iterop_seq_mon (n,,x dni j) × x j.
Proof.
  induction j as [j jlt].
  assert (jle := natlthsntoleh _ _ jlt).
  Local Open Scope transport.
  set (f := nil j S O n-j : stn 3 nat).
  assert (B : stnsum f = S n).
  { unfold stnsum, f; simpl. repeat unfold append_vec; simpl. rewrite natplusassoc.
    rewrite (natpluscomm 1). rewrite <- natplusassoc.
    rewrite natpluscomm. apply (maponpaths S). rewrite natpluscomm. now apply minusplusnmm. }
  set (r := weqfibtototal _ _ (λ k, eqweqmap (maponpaths (λ n, k < n : UU) B) ) :
              stn (stnsum f) stn (S n)).
  set (x' := x r).
  intermediate_path (iterop_seq_mon (stnsum f,, x')).
  { induction B. apply iterop_seq_mon_homot. intros i. unfold x'.
    unfold funcomp. apply maponpaths.
    apply ( invmaponpathsincl _ ( isinclstntonat _ ) _ _).
    reflexivity. }
  unfold iterop_seq_mon. unfold iterop_seq.
  refine (associativityOfProducts' f x' @ _).
  unfold partition.
  rewrite 3 iterop_seq_seq_mon_step.
  change (iterop_seq_seq_mon (0,,_)) with (unel M); rewrite lunax.
  unfold funcomp at 1 2.
  set (s0 := dni lastelement (dni lastelement (@lastelement 0))).
  unfold funcomp at 1.
  set (s1 := dni lastelement (@lastelement 1)).
  set (s2 := @lastelement 2).
  unfold partition'. unfold inverse_lexicalEnumeration.
  change (f s0) with j; change (f s1) with (S O); change (f s2) with (n-j).
  set (f' := nil j n-j : stn 2 nat).
  assert (B' : stnsum f' = n).
  { unfold stnsum, f'; simpl. repeat unfold append_vec; simpl.
    rewrite natpluscomm. now apply minusplusnmm. }
  set (r' := weqfibtototal _ _ (λ k, eqweqmap (maponpaths (λ n, k < n : UU) B') ) :
              stn (stnsum f') stn n).
  set (x'' := x dni (j,, jlt) r').
  intermediate_path (iterop_seq_mon (stnsum f',, x'') × x (j,, jlt)).
  { assert (L := iterop_seq_mon_len1 (λ j0 : stn 1, x' ((weqstnsum1 f) (s1,, j0)))).
    unfold functionToSequence in L.
    rewrite L. rewrite assocax. refine (transportf (λ k, _×k=_) (commax _ _ _) _).
    rewrite <- assocax.
    apply two_arg_paths.
    { refine (_ @ !associativityOfProducts' f' x'').
      unfold partition.
      rewrite 2 iterop_seq_seq_mon_step.
      change (iterop_seq_seq_mon (0,,_)) with (unel M); rewrite lunax.
      apply two_arg_paths.
      { unfold funcomp. set (s0' := dni lastelement (@lastelement 0)).
        unfold partition'. change (f' s0') with j.
        apply iterop_seq_mon_homot. intro i. unfold x', x'', funcomp. apply maponpaths.
        apply subtypeEquality_prop.
        change_lhs (stntonat _ i).
        unfold dni. unfold di.
        unfold stntonat.
        match goal with |- context [ match ?x with __ end ]
                        ⇒ induction x as [c|c] end.
        { reflexivity. }
        { apply fromempty. assert (P := c : i j); clear c.
          exact (natlthtonegnatgeh _ _ (stnlt i) P). } }
      { unfold partition'. change (f' lastelement) with (n-j).
        apply iterop_seq_mon_homot. intro i. unfold x', x'', funcomp. apply maponpaths.
        apply subtypeEquality_prop. change_lhs (j+1+i). unfold dni, di.
        unfold stntonat.
        match goal with |- context [ match ?x with __ end ]
                        ⇒ induction x as [c|c] end.
        { apply fromempty. exact (negnatlthplusnmn j i c). }
        { change_rhs (1 + (j + i)). rewrite <- natplusassoc. rewrite (natpluscomm j 1).
          reflexivity. } } }
    unfold x'. unfold funcomp. apply maponpaths.
    apply subtypeEquality_prop. change (j+0 = j). apply natplusr0. }
  { apply (maponpaths (λ k, k × _)). induction (!B').
    change_rhs (iterop_seq_mon (n,, x dni (j,, jlt))).
    apply iterop_seq_mon_homot; intros i.
    unfold x''. unfold funcomp. apply maponpaths.
    apply ( invmaponpathsincl _ ( isinclstntonat _ ) _ _).
    reflexivity. }
Qed.

Theorem commutativityOfProducts {M:abmonoid} {n} (x:stn nM) (f:stn n stn n) :
  iterop_seq_mon (n,,x) = iterop_seq_mon (n,,xf).
Proof.
  intros. induction n as [|n IH].
  - reflexivity.
  - set (i := @lastelement n); set (i' := f i).
    rewrite (iterop_seq_mon_step (x f)).
    change ((x f) lastelement) with (x i').
    rewrite (commutativityOfProducts_helper x i').
    apply (maponpaths (λ k, k×_)).
    set (f' := weqoncompl_ne f i (stnneq i) (stnneq i') : stn_compl i stn_compl i').
    set (g := weqdnicompl i); set (g' := weqdnicompl i').
    apply pathsinv0.
    set (h := (invweq g' f' g)%weq).
    assert (L : x f dni lastelement ¬ x dni i' h).
    { intro j. unfold funcomp. apply maponpaths.
      apply (invmaponpathsincl _ ( isinclstntonat _ ) _ _).
      unfold h. rewrite 2 weqcomp_to_funcomp_app. rewrite pr1_invweq.
      induction j as [j J]. unfold g, i, f', g', stntonat.
      rewrite <- (weqdnicompl_compute i').
      unfold pr1compl_ne.
      unfold funcomp.
      rewrite homotweqinvweq.
      rewrite (weqoncompl_ne_compute f i (stnneq i) (stnneq i') _).
      apply maponpaths, maponpaths.
      apply subtypeEquality_prop.
      unfold stntonat.
      now rewrite weqdnicompl_compute. }
    rewrite (IH (x dni i') h).
    now apply iterop_seq_mon_homot.
Defined.

finite products (or sums) in monoids

  Require Export UniMath.Combinatorics.FiniteSets.
  Require Export UniMath.Foundations.NaturalNumbers.

Section NatCard.

first a toy warm-up with addition in nat, based on cardinalities of standard finite sets

  Theorem nat_plus_associativity {n} {m:stn nnat} (k: (ij : i, stn (m i)), nat) :
    stnsum (λ i, stnsum (curry k i)) = stnsum (k lexicalEnumeration m).
  Proof.
    intros. apply weqtoeqstn.
    intermediate_weq ( i, stn (stnsum (curry k i))).
    { apply invweq. apply weqstnsum1. }
    intermediate_weq ( i j, stn (curry k i j)).
    { apply weqfibtototal; intro i. apply invweq. apply weqstnsum1. }
    intermediate_weq ( ij, stn (k ij)).
    { exact (weqtotal2asstol (stn m) (stn k)). }
    intermediate_weq ( ij, stn (k (lexicalEnumeration m ij))).
    { apply (weqbandf (inverse_lexicalEnumeration m)). intro ij. apply eqweqmap.
      apply (maponpaths stn), (maponpaths k). apply pathsinv0, homotinvweqweq. }
    apply inverse_lexicalEnumeration.
  Defined.

  Corollary nat_plus_associativity' n (m:stn nnat) (k: i, stn (m i) nat) :
    stnsum (λ i, stnsum (k i)) = stnsum (uncurry (Z := λ _,_) k lexicalEnumeration m).
  Proof. intros. exact (nat_plus_associativity (uncurry k)). Defined.

  Lemma iterop_fun_nat {n:nat} (x:stn nnat) : iterop_fun 0 add x = stnsum x.
  Proof.
    intros. induction n as [|n I].
    - reflexivity.
    - induction n as [|n _].
      + reflexivity.
      + simple refine (iterop_fun_step 0 add natplusl0 _ @ _ @ ! stnsum_step _).
        apply (maponpaths (λ i, i + x lastelement)). apply I.
  Defined.

  Theorem associativityNat : isAssociative_fun 0 add.
  Proof.
    intros n m x. unfold iterop_fun_fun. apply pathsinv0. rewrite 2 iterop_fun_nat.
    intermediate_path (stnsum (λ i : stn n, stnsum (x i))).
    - apply maponpaths. apply funextfun; intro. apply iterop_fun_nat.
    - now apply nat_plus_associativity'.
  Defined.

  Definition finsum' {X} (fin : isfinite X) (f : X nat) : nat.
  Proof.
    intros. exact (fincard (isfinitetotal2 (stnf) fin (λ i, isfinitestn (f i)))).
  Defined.


End NatCard.

Definition MultipleOperation (X:UU) : UU := UnorderedSequence X X.

Section Mult.

  Context {X:UU} (op : MultipleOperation X).

  Definition composeMultipleOperation : UnorderedSequence (UnorderedSequence X) X.
  Proof.
    intros s. exact (op (composeUnorderedSequence op s)).
  Defined.

  Definition isAssociativeMultipleOperation := x, op (flattenUnorderedSequence x) = composeMultipleOperation x.

End Mult.

Definition AssociativeMultipleOperation {X} := op:MultipleOperation X, isAssociativeMultipleOperation op.

Definition iterop_unoseq_mon {M:abmonoid} : MultipleOperation M.
Proof.
  intros m.
  induction m as [J m].
  induction J as [I fin].
  simpl in m.
  unfold isfinite, finstruct in fin.
  simple refine (squash_to_set
                   (setproperty M)
                   (λ (g : finstruct I), iterop_fun_mon (m g : _ M))
                   _
                   fin).
  intros. induction x as [n x]. induction x' as [n' x'].
  assert (p := weqtoeqstn (invweq x' x)%weq).
  induction p.
  assert (w := commutativityOfProducts (m x') (invweq x' x)%weq).
  simple refine (_ @ ! w); clear w. unfold iterop_seq_mon, iterop_fun_mon, iterop_seq.
  apply maponpaths. rewrite weqcomp_to_funcomp. apply funextfun; intro i.
  unfold funcomp. simpl. apply maponpaths. exact (! homotweqinvweq x' (x i)).
Defined.

Definition iterop_unoseq_abgr {G:abgr} : MultipleOperation G.
Proof.
  exact (iterop_unoseq_mon (M:=G)).
Defined.

Definition sum_unoseq_ring {R:ring} : MultipleOperation R.
Proof.
  exact (iterop_unoseq_mon (M:=R)).
Defined.

Definition product_unoseq_ring {R:commring} : MultipleOperation R.
Proof.
  exact (iterop_unoseq_mon (M:=ringmultabmonoid R)).
Defined.

Definition iterop_unoseq_unoseq_mon {M:abmonoid} : UnorderedSequence (UnorderedSequence M) M.
Proof.
  intros s. exact (composeMultipleOperation iterop_unoseq_mon s).
Defined.

Definition abmonoidMultipleOperation {M:abmonoid} (op := @iterop_unoseq_mon M) : MultipleOperation M
  := iterop_unoseq_mon.

Theorem isAssociativeMultipleOperation_abmonoid {M:abmonoid}
  : isAssociativeMultipleOperation (@iterop_unoseq_mon M).
Proof.

Abort.