Library TypeTheory.ALV1.RelUnivYonedaCompletion
TypeTheory.ALV1.RelUnivYonedaCompletion
Part of the TypeTheory library (Ahrens, Lumsdaine, Voevodsky, 2015–present).
This file provides the result: given a universe in preShv C relative to the Yoneda embedding Yo : C -> preShv C , this transfers to a similar relative universe in preShv (RC C) . i.e. on the Rezk-completion of C.
Require Import UniMath.Foundations.Sets.
Require Import TypeTheory.Auxiliary.CategoryTheoryImports.
Require Import TypeTheory.Auxiliary.Auxiliary.
Require Import TypeTheory.Auxiliary.UnicodeNotations.
Require Import TypeTheory.ALV1.RelativeUniverses.
Require Import TypeTheory.ALV1.Transport_along_Equivs.
Set Automatic Introduction.
Require Import TypeTheory.Auxiliary.CategoryTheoryImports.
Require Import TypeTheory.Auxiliary.Auxiliary.
Require Import TypeTheory.Auxiliary.UnicodeNotations.
Require Import TypeTheory.ALV1.RelativeUniverses.
Require Import TypeTheory.ALV1.Transport_along_Equivs.
Set Automatic Introduction.
Local Notation "[ C , D ]" := (functor_category C D).
Section fix_category.
Variable C : category.
Let RC : univalent_category := Rezk_completion C (homset_property _).
Definition Rezk_on_RelUnivYoneda (X : @relative_universe C _ Yo)
: relative_universe
((yoneda RC (homset_property RC) : functor RC (preShv RC))
:
functor RC (preShv RC)).
Proof.
use (Transfer_of_RelUnivYoneda (Rezk_eta C _) ).
- apply Rezk_eta_fully_faithful.
- apply Rezk_eta_essentially_surjective.
- apply univalent_category_is_univalent.
- apply X.
Defined.
Definition Rezk_eta_full : full (Rezk_eta C (homset_property C)).
Proof.
apply full_from_ff.
apply Rezk_eta_fully_faithful.
Defined.
Lemma is_univalent_preShv X : is_univalent (preShv X).
Proof.
apply is_univalent_functor_category.
Defined.
Definition Rezk_on_WeakRelUnivYo :
weak_relative_universe (yoneda C (homset_property C))
≃ weak_relative_universe (yoneda RC (homset_property _ ) ).
Proof.
use (Transfer_of_WeakRelUnivYoneda (Rezk_eta C _ )).
- apply Rezk_eta_fully_faithful.
- apply Rezk_eta_essentially_surjective.
Defined.
End fix_category.