Library UniMath.Topology.Prelim
Require Export UniMath.Foundations.Sets.
Require Import UniMath.MoreFoundations.Tactics.
Require Export UniMath.Combinatorics.FiniteSequences.
Require Export UniMath.Foundations.NaturalNumbers.
Lemma hinhuniv' {P X : UU} :
isaprop P → (X → P) → (∥ X ∥ → P).
Proof.
intros HP Hx.
apply (hinhuniv (P := make_hProp _ HP)).
exact Hx.
Qed.
Lemma hinhuniv2' {P X Y : UU} :
isaprop P → (X → Y → P) → (∥ X ∥ → ∥ Y ∥ → P).
Proof.
intros HP Hxy.
apply (hinhuniv2 (P := make_hProp _ HP)).
exact Hxy.
Qed.
Ltac apply_pr2 T :=
first [ refine (pr2 (T) _)
| refine (pr2 (T _) _)
| refine (pr2 (T _ _) _)
| refine (pr2 (T _ _ _) _)
| refine (pr2 (T _ _ _ _) _)
| refine (pr2 (T _ _ _ _ _) _)
| refine (pr2 (T))
| refine (pr2 (T _))
| refine (pr2 (T _ _))
| refine (pr2 (T _ _ _))
| refine (pr2 (T _ _ _ _))
| refine (pr2 (T _ _ _ _ _)) ].
Ltac apply_pr2_in T H :=
first [ apply (pr2 (T)) in H
| apply (λ H0, pr2 (T H0)) in H
| apply (λ H0 H1, pr2 (T H0 H1)) in H
| apply (λ H0 H1 H2, pr2 (T H0 H1 H2)) in H
| apply (λ H0 H1 H2 H3, pr2 (T H0 H1 H2 H3)) in H
| apply (λ H0 H1 H2 H3 H4, pr2 (T H0 H1 H2 H3 H4)) in H ].
Lemma max_le_l : ∏ n m : nat, (n ≤ max n m)%nat.
Proof.
induction n as [ | n IHn] ; simpl max.
- intros m ; reflexivity.
- induction m as [ | m _].
+ now apply isreflnatleh.
+ now apply IHn.
Qed.
Lemma max_le_r : ∏ n m : nat, (m ≤ max n m)%nat.
Proof.
induction n as [ | n IHn] ; simpl max.
- intros m ; now apply isreflnatleh.
- induction m as [ | m _].
+ reflexivity.
+ now apply IHn.
Qed.
Definition singletonSequence {X} (A : X) : Sequence X := (1 ,, λ _, A).
Definition pairSequence {X} (A B : X) : Sequence X.
Proof.
∃ 2.
intros m.
induction m as [m _].
induction m as [ | _ _].
exact A.
exact B.
Defined.
Definition union {X : UU} (P : (X → hProp) → hProp) : X → hProp :=
λ x : X, ∃ A : X → hProp, P A × A x.
Lemma union_hfalse {X : UU} :
union (λ _ : X → hProp, hfalse) = (λ _ : X, hfalse).
Proof.
apply funextfun ; intros x.
apply hPropUnivalence.
- apply hinhuniv.
intros A.
apply (pr1 (pr2 A)).
- apply fromempty.
Qed.
Lemma union_or {X : UU} :
∏ A B : X → hProp,
union (λ C : X → hProp, C = A ∨ C = B)
= (λ x : X, A x ∨ B x).
Proof.
intros A B.
apply funextfun ; intro x.
apply hPropUnivalence.
- apply hinhuniv.
intros C.
generalize (pr1 (pr2 C)).
apply hinhfun.
apply sumofmaps.
+ intro e.
rewrite <- e.
left.
apply (pr2 (pr2 C)).
+ intro e.
rewrite <- e.
right.
apply (pr2 (pr2 C)).
- apply hinhfun ; apply sumofmaps ; [ intros Ax | intros Bx].
+ ∃ A.
split.
apply hinhpr.
now left.
exact Ax.
+ ∃ B.
split.
apply hinhpr.
now right.
exact Bx.
Qed.
Lemma union_hProp {X : UU} :
∏ (P : (X → hProp) → hProp),
(∏ (L : (X → hProp) → hProp), (∏ A, L A → P A) → P (union L))
→ (∏ A B, P A → P B → P (λ x : X, A x ∨ B x)).
Proof.
intros P Hp A B Pa Pb.
rewrite <- union_or.
apply Hp.
intros C.
apply hinhuniv.
now apply sumofmaps ; intros →.
Qed.
finite intersection
Definition finite_intersection {X : UU} (P : Sequence (X → hProp)) : X → hProp.
Proof.
intros x.
simple refine (make_hProp _ _).
apply (∏ n, P n x).
apply (impred_isaprop _ (λ _, propproperty _)).
Defined.
Lemma finite_intersection_htrue {X : UU} :
finite_intersection nil = (λ _ : X, htrue).
Proof.
apply funextfun ; intros x.
apply hPropUnivalence.
- intros _.
apply tt.
- intros _ m.
generalize (pr1 m) (pr2 m).
intros m' Hm.
apply fromempty.
revert Hm.
apply negnatlthn0.
Qed.
Lemma finite_intersection_1 {X : UU} :
∏ (A : X → hProp),
finite_intersection (singletonSequence A) = A.
Proof.
intros A.
apply funextfun ; intros x.
apply hPropUnivalence.
- intros H.
simple refine (H _).
now ∃ 0.
- intros Lx m.
exact Lx.
Qed.
Lemma finite_intersection_and {X : UU} :
∏ A B : X → hProp,
finite_intersection (pairSequence A B)
= (λ x : X, A x ∧ B x).
Proof.
intros A B.
apply funextfun ; intro x.
apply hPropUnivalence.
- intros H.
split.
simple refine (H (0,,_)).
reflexivity.
simple refine (H (1,,_)).
reflexivity.
- intros H m ; simpl.
change m with (pr1 m,,pr2 m).
generalize (pr1 m) (pr2 m).
clear m.
intros m Hm.
induction m as [ | m _].
+ apply (pr1 H).
+ apply (pr2 H).
Qed.
Lemma finite_intersection_case {X : UU} :
∏ (L : Sequence (X → hProp)),
finite_intersection L =
sumofmaps (λ _ _, htrue)
(λ (AB : (X → hProp) × Sequence (X → hProp)) (x : X), pr1 AB x ∧ finite_intersection (pr2 AB) x)
(disassembleSequence L).
Proof.
intros L.
apply funextfun ; intros x.
apply hPropUnivalence.
- intros Hx.
induction L as [n L].
induction n as [ | n _] ; simpl.
+ apply tt.
+ split.
× simple refine (Hx _).
× intros m.
simple refine (Hx _).
- induction L as [n L].
induction n as [ | n _] ; simpl.
+ intros _ n.
apply fromempty.
induction (negnatlthn0 _ (pr2 n)).
+ intros Hx m.
change m with (pr1 m,,pr2 m).
generalize (pr1 m) (pr2 m) ;
clear m ;
intros m Hm.
induction (natlehchoice _ _ (natlthsntoleh _ _ Hm)) as [Hm' | ->].
generalize (pr2 Hx (m,,Hm')).
unfold funcomp, dni_lastelement ; simpl.
assert (H : Hm = natlthtolths m n Hm' ).
{ apply (pr2 (natlth m (S n))). }
now rewrite H.
assert (H : lastelement = (n,, Hm)).
{ now apply subtypePath_prop. }
rewrite <- H.
exact (pr1 Hx).
Qed.
Lemma finite_intersection_append {X : UU} :
∏ (A : X → hProp) (L : Sequence (X → hProp)),
finite_intersection (append L A) = (λ x : X, A x ∧ finite_intersection L x).
Proof.
intros A L.
rewrite finite_intersection_case.
simpl.
rewrite append_vec_compute_2.
apply funextfun ; intro x.
apply maponpaths.
apply map_on_two_paths.
- induction L as [n L] ; simpl.
apply maponpaths.
apply funextfun ; intro m.
unfold funcomp.
rewrite <- replace_dni_last.
apply append_vec_compute_1.
- reflexivity.
Qed.
Lemma finite_intersection_hProp {X : UU} :
∏ (P : (X → hProp) → hProp),
(∏ (L : Sequence (X → hProp)), (∏ n, P (L n)) → P (finite_intersection L))
↔ (P (λ _, htrue) × (∏ A B, P A → P B → P (λ x : X, A x ∧ B x))).
Proof.
intros P.
split.
- split.
+ rewrite <- finite_intersection_htrue.
apply X0.
intros n.
induction (negnatlthn0 _ (pr2 n)).
+ intros A B Pa Pb.
rewrite <- finite_intersection_and.
apply X0.
intros n.
change n with (pr1 n,,pr2 n).
generalize (pr1 n) (pr2 n) ;
clear n ;
intros n Hn.
now induction n as [ | n _] ; simpl.
- intros Hp.
apply (Sequence_rect (P := λ L : Sequence (X → hProp),
(∏ n : stn (length L), P (L n)) → P (finite_intersection L))).
+ intros _.
rewrite finite_intersection_htrue.
exact (pr1 Hp).
+ intros L A IHl Hl.
rewrite finite_intersection_append.
apply (pr2 Hp).
× rewrite <- (append_vec_compute_2 L A).
now apply Hl.
× apply IHl.
intros n.
rewrite <- (append_vec_compute_1 L A).
apply Hl.
Qed.